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Abstract

Convolutional sparse coding (CSC) has become an in-
creasingly important tool in machine learning and com-
puter vision. Image features can be learned and subse-
quently used for classification and reconstruction tasks. As
opposed to patch-based methods, convolutional sparse cod-
ing operates on whole images, thereby seamlessly capturing
the correlation between local neighborhoods. In this pa-
per, we propose a new approach to solving CSC problems
and show that our method converges significantly faster and
also finds better solutions than the state of the art. In ad-
dition, the proposed method is the first efficient approach to
allow for proper boundary conditions to be imposed and it
also supports feature learning from incomplete data as well
as general reconstruction problems.

1. Introduction

An increasing number of computer vision tasks rely
on natural image statistics. Low-level problems that ben-
efit from good priors include inpainting, denoising, de-
blurring, and super-resolution, while recognition, classifi-
cation and other higher-level tasks often use learned fea-
tures as priors for natural images. In this paper, we re-
visit one strategy for unsupervised learning of image fea-
tures: convolutional sparse coding (CSC). CSC was intro-
duced in the context of modeling receptive fields in hu-
man vision [18], but it has recently been demonstrated to
have important applications in a wide range of computer vi-
sion problems such as low/mid-level feature learning, low-
level reconstruction [21, 7], as part of more complex hier-
archical structures or networks in high-level computer vi-
sion challenges [13, 22, 23], and in physically-motivated
computational imaging problems [12, 11]. Beyond these
applications, CSC could find applications in many other
reconstruction tasks and feature-based methods, including
deblurring, denoising, inpaiting, classification, localization,
and tracking.

CSC is closely related to popular patch-based learning
and reconstruction methods [5, 16, 24]. However, features
learned with patch-based methods often contain shifted ver-

sions of the same features and latent structures of the under-
lying signal may be lost when dividing it into small patches.
A more elegant way to model many of these problems is
to use a sum of sparsely-distributed convolutional features.
The main drawback of convolutional models, however, is
their computational complexity. Not only is it very chal-
lenging to find a solution to convolutional sparse coding
problems in a reasonable amount of time, but finding a good
local minimum is difficult as well. Generally, CSC is a non-
convex problem and many existing methods provide little
to no guarantees for global convergence. Seminal advances
in fast convolutional sparse coding have recently shown
that feature learning via CSC can be efficiently solved in
the frequency domain. Grosse et al. [9] were the first to
propose a frequency domain method for 1D audio signals,
while [3, 4, 14] later demonstrate efficient frequency do-
main approaches for 2D image data. While this is the first
step towards making CSC practical, these frequency meth-
ods can introduce boundary artifacts for both learning and
reconstruction [13] and, as inherently global approaches,
make it difficult to work with incomplete data.

Building on recent advances in optimization [6, 2, 19, 1,
20], we propose a new splitting-based approach to convolu-
tional sparse coding. We not only show that our formulation
allows us to easily incorporate proper boundary conditions
and learn from sparse observations, but we also demonstrate
that the proposed method is faster and converges to better
solutions than the state of the art. In particular, we make the
following contributions:

• We derive a flexible formulation of the convolutional
sparse coding problem, and an efficient solution by
splitting the objective into a sum of simple, con-
vex functions. This formulation fits into most recent
forward-backward optimization frameworks.

• We demonstrate that the proposed method allows for
proper boundary conditions to be imposed without sac-
rificing performance; it converges faster than alterna-
tive methods and finds better solutions. We verify the
latter using several low-level reconstruction problems.

• We show feature learning from incomplete observa-
tions, which has not been demonstrated with existing

1



CSC solvers.

• We show that the proposed solver is also efficient
when working with known features, such as mix-
tures of Gaussians or physically-motivated convolu-
tional bases.

2. Mathematical Framework
Traditionally, convolutional sparse coding problems are

expressed in the form

argmin
d,z

1

2
‖x−

K∑
k=1

dk ∗ zk‖22 + β

K∑
k=1

‖zk‖1

subject to ‖dk‖22 ≤ 1 ∀k ∈ {1, . . . ,K},

(1)

where zk are sparse feature maps that approximate the data
term x when convolved with the corresponding filters dk of
fixed spatial support. Here x ∈ RD, zk ∈ RD are vec-
torized images, dk ∈ RM are the vectorized 2D filters,
k = 1 . . .K, and ∗ is the 2D convolution operator de-
fined on the vectorized inputs. While the above equation
is strictly only valid for a single target image, it can easily
be generalized to multiple images x.

Recently Bristow et al. [3, 4] have shown remarkable im-
provements in efficiency by exploiting Parseval’s theorem
for solving Eq. (1), which states that the energy of a signal
is equivalent — up to a constant — to that of its Fourier
transform. We will neglect this constant in the following.
Eq. 1 can therefore be reformulated [3, 4, 14] as

argmin
d,z

1

2
‖x̂−

K∑
k=1

d̂k � ẑk‖22 + β

K∑
k=1

‖tk‖1

subject to ‖sk‖22 ≤ 1 ∀k ∈ {1, . . . ,K}

sk = SΦT d̂k ∀k ∈ {1, . . . ,K}
tk = zk ∀k ∈ {1, . . . ,K},

(2)

which expresses the computationally expensive convolution
operations as more efficient multiplications in the frequency
domain. Here,ˆdenotes the frequency representation of a
signal, � is the component-wise product, Φ is the discrete
Fourier transform (DFT) matrix, and S projects a filter onto
its (small) spatial support. The slack variables sk and tk
allow Eq. 2 to be solved by splitting the objective into mul-
tiple subproblems that each can be solved efficiently.

Is important to note that Eqs. 1 and 2 are actually only
equivalent under the assumption of circular boundary con-
ditions [22]. Kavukcuoglu et al. [13] point out that bound-
ary conditions are one essential hurdle in the convolutional
model that affects the optimization even for non-circular
boundary conditions, because pixels close to the boundary
are, in general, covered by fewer filters than center pixels.
While heuristics [3] might be acceptable for learning filters

with very small spatial support, this assumption does not
necessarily hold for larger filters or for general reconstruc-
tion problems. We propose the following, general formula-
tion for convolutional sparse coding:

argmin
d,z

1

2
‖x−M

K∑
k=1

dk ∗ zk‖22 + β

K∑
k=1

‖zk‖1

subject to ‖dk‖22 ≤ 1 ∀k ∈ {1, . . . ,K}.

(3)

Here, M is a diagonal or block-diagonal matrix, such that
it decouples linear systems of the form (MTM + I)x = b
into many small and independent systems that are efficiently
solved. For example, for boundary handling M can be a bi-
nary diagonal matrix that masks out the boundaries of the
padded estimation

∑K
k=1 dk ∗ zk. This allows us to use

unmodified filters in boundary regions, thus preserving the
convolutional nature of the problem without requiring circu-
lar boundaries or other conditions. Furthermore, we show
that M allows for efficient learning and reconstruction from
incomplete data.

Unfortunately, Eq. 3 cannot be solved directly with the
“Fourier trick” discussed in the literature (Eq. 2). In the
following, we derive a formulation that is not only flexible
in allowing us to solve Eq. 3 efficiently, but we also show
that our formulation solves the conventional convolutional
sparse coding problem (Eq. 1) faster than previous methods
and converges to better solutions.

2.1. Efficient Splitting of the Objective

To efficiently solve Eq. 3, we reformulate it such that
the constraints are included in the objective via an indica-
tor function indC(·), which is defined on the convex set of
the constraints C = {v | ‖Sv‖22 ≤ 1}. This yields the
following unconstrained objective:

argmin
d,z

1

2
‖x−M

K∑
k=1

dk∗zk‖22+β

K∑
k=1

‖zk‖1+

K∑
k=1

indC(dk),

(4)
which can be expressed as the following sum of functions

argmin
d,z

f1(Dz) +

K∑
k=1

(f2(zk) + f3(dk)) , with (5)

f1(v) =
1

2
‖x−Mv‖22, f2(v) = β‖v‖1, f3(v) = indC(v).

Here, z = [zT1 . . . z
T
K ]T and D = [D1 . . .DK ] is a concate-

nation of Toeplitz matrices, each one representing a convo-
lution with the respective filter dk. Eq. (5) consists of a sum
of functions fi, which are all simple to optimize individu-
ally, whereas their sum is challenging. Following [1], we
define f1 with M included because that splits the data term
into two different subproblems involving M and D sepa-
rately but never jointly.



2.2. Generalization of the Objective

To derive this result more intuitively, we consider the
general objective from (5)

argmin
z

I∑
i=1

fi (Kiz) , (6)

where Ki : Rbi×ai are arbitrary matrices, fi : Rbi → R are
closed, proper, convex functions, and i ∈ {1, . . . , I}, such
that fi(Kj · ) : Rai → R; I is the number of functions in
the sum.

Eq. 6 is motivated by recent work in image deconvolu-
tion [10, 1], which have a similar objective that consists of a
sum of simple convex functions. The problem in Eq. 6 can
be reformulated as

argmin
z

I∑
i=1

fi (Kiz) = f (Kz) , with

K =

K1

...
KI

 and f(v) =

I∑
i=1

fi(vi),

(7)

where vi selects the i-th support of v. Using a formula-
tion with the stacked matrix K allows us to remap Eq. (6)
to existing optimization frameworks, as shown for Cham-
bolle and Pock’s method in [10], for ADMM in [1], and for
stochastic optimization methods in [20].

For clarity, we describe only one possible method to
solve Eq. (7): ADMM, which solves problems of the form:

argmin
z

h(y) + g(z) subject to Ay = z. (8)

A detailed discussion of related algorithms can be found
in [2]. Using the standard scaled form [2] and setting h = 0,
A = K and g = f , which may seem unintuitive before
deriving the algorithm, yields Alg. 1, that solves Eq. (7). We
observe that the resulting minimization becomes separable
in all the fi.

Algorithm 1 ADMM for a sum of functions in Eq. (7)

1: for k = 1 to V do
2: yk+1 = argmin

y
‖Ky − z + λk‖22

3: zk+1
i = prox fi

ρ

(Kiy
k+1
i + λki ) ∀i ∈ {1, . . . , I}

4: λk+1 = λk + (Kyk+1 − zk+1)
5: end for

Since in this CSC formulation, M is included in f1, we
can solve the update in line 2 of Alg. 1 efficiently in the
Fourier domain. Note that the combination of splitting M
with the filter generation Dz via f1(Dz) leads to a non-
standard application of ADMM; the standard approach [2]

would combine MD as a single operator. The notational
shortcut prox· is the proximal operator as defined in [19].
Many different proximal operators are known in the liter-
ature [19]; formulating our method using these operators
allow us to easily apply the known derivations. Although
we derived a solution to Eq. 7 using ADMM, this is equally
possible for Chambolle and Pock’s method or stochastic op-
timization [20].

2.3. ADMM for CSC-specific Subproblems

We continue to discuss how the general ADMM-based
algorithm described in the previous subsection is applied
to convolutional sparse coding. Solving the first quadratic
subproblem from Alg. 1 (line 2) gives

yopt = argmin
y

‖Ky − τ‖22 = (KTK)−1(KT τ) (9)

Here, we have set τ = z − λk as a notational shortcut.
Depending on whether we solve for the filters (i.e. y = d)
or for the feature maps (i.e. y = z), we get:

dopt = (Z†Z + 2I)−1(Z†τ1 + τ2 + τ3) for y = d

zopt = (D†D + I)−1(D†τ1 + τ2) for y = z
(10)

Here Z is a concatenation of Toeplitz matrices for the re-
spective sparse codes zk and τi selects again the i-th sup-
port of τ as defined for Eq. (7). The operator ·† defines here
the conjugate transpose, with notation borrowed from [14].
In both cases, one can find a variable reordering for the
equations systems in Eq. (10), that makes (Z†Z + 2I) and
(D†D + I) block-diagonal [3, 14], which makes the inver-
sion efficient by parallelization over the j ∈ {1 . . . D} dif-
ferent blocks. The inverse can be efficiently computed for
each block j using the Woodbury formula, giving

(Z†jZj + 2I)−1 =
1

2
I− 1

2
Z†j(2I + ZjZ

†
j)
−1Zj

(D†jDj + I)−1 = I−
D†jDj

1 + DjD
†
j

,
(11)

where the second equation holds, since a block in Dj is just
a row-vector. We compute the first inverse (2I + ZjZ

†
j)
−1

by computing its Cholesky factorization. In contrast to the
direct inversion in [4] (due to the code update, this has to
be done in each iteration of their method), caching this fac-
torization leads to a significantly decreased running time as
described below.

The proximal operators for Alg. 1 (line 3) are simple to
derive and well known in literature [19]:

proxθf1(v) = (I + θMTM)−1(v + θMTx) Quadratic

proxθf2(v) = max

(
1− θβ

|v|
, 0

)
� v Shrinkage

proxθf3(v) =

{ Sv
‖Sv‖2 : ‖Sv‖22 ≥ 1

Sv : else
Projection



where the inverse in proxθf1 is straightforward to evaluate
as M is usually a diagonal matrix.

2.4. Alternating for the biconvex problem

Above, we have described Alg. 1, which can solve the
bi-convex problem (3) for z or d when the respective other
variable is fixed. To jointly solve for both, we follow the
standard approach of alternating between them, yielding
Alg. 2.

Algorithm 2 CSC learning using coordinate descent

1: Algorithm penalty parameters: ρd ∈ R+, ρz ∈ R+

2: Initialize variables: d0, z0, λ0d, λ
0
z

3: repeat {Outer iterations}
4: Kernel update: Solve Eq. (5) w.r.t. d:

di, λid ← argmind f1(Zd)+
∑K
k=1 f3(dk) using

Alg. 1 with ρ = ρd, λ = λi−1d

5: Code update: Solve Eq. (5) w.r.t. z:
zi, λiz ← argminz f1(Dz) +

∑K
k=1 f2(zk) using

Alg. 1 with ρ = ρz, λ = λi−1z

6: until No more progress in both directions.

With this alternating approach, we have constructed a
coordinate descent for z and d. The individual Lagrange
multipliers are initialized with the ones from the previous
iteration. In practice, we run each of the two sub-routines
until sufficient progress has been made. The step-size of
the coordinate descent is defined by the progress each local
optimization makes. Using a constant number of P itera-
tions for each substep gave us a sufficiently good perfor-
mance. We stop the algorithm when none of the two op-
timizations can further decrease the objective; a local min-
imum is found. It also follows that our algorithm mono-
tonically decreases the objective for its iteration sequence
di, zi.

2.5. Implementation details

For the objective in Eq. (3), we found that the parameter
β = 1 delivers a good tradeoff between sparsity and data fit.
All results in this paper are computed with this setting. We
have verified that other settings of β lead to quantitatively
similar results.

For Algorithm 2, we have chosen the heuristic values
ρd = 1/(100 · max(x)) and ρz = 1/(10 · max(x)). This
choice dampens variations in the optimization path of the
filters more than for the codes.

3. Analysis
3.1. Complexity Analysis

This section analyzes the complexity of the proposed op-
timization approach and compares the theoretical runtime

with alternative methods. For D being the number of pixels
for a single image in x, N being the number of images, K
being the number of kernels to learn, M being the size of
the filter support, and P inner iterations (of the substeps in
Alg. 2), the computation cost is shown in Table 1.

We observe immediately that Bristow’s method has sig-
nificantly better performance than Zeiler et al. when K <
DM . Its dominating cost is the inversion of the D linear
systems. Note that in contrast to spatial methods, Bristow’s
method, as well as ours, is independent of the filter size M .

For the proposed method, we consider two cases: K >
N and K ≤ N . In the first case (K > N ), we exploit the
inversion trick as explained in Eq. (11). Here, each of theD
matrices Zj is an N ×K matrix. Thus, by using Eq. (11),
we reduce the cost of the inverse from K3 to KN2. Since
we cache the factorizations, this cost is only for one of the P
local iterations. For the other (P − 1) iterations, the back-
solves cost only KN (instead of K2 for the naive inver-
sion).

In the second case, when K ≤ N , we have the full
cost of the Cholesky factorization K3 of the D matrices
Zj once per P iterations, but again for all other (P − 1)
iterations, only the back-solve cost K2. Thus, by caching
the factorizations, we are able to achieve a speedup of the
linear systems by P

1+(P−1)/K in this case. For our setting of
P = 10, even a moderate number of K = 100 filters leads
to a speedup of 9×.

In the following, we show that not only the complex-
ity per iteration decreases, but the convergence improves as
well.

Method Cost (in flops)
Zeiler et al. [22] PN · ( KD︸︷︷︸

Conjugate gradient

· KDM︸ ︷︷ ︸
Spatial convolutions

+ KD︸︷︷︸
Shrinkage

)

Bristow et al. [3, 4] PN · ( K3D︸ ︷︷ ︸
Linear systems

+KD log(D)︸ ︷︷ ︸
FFTs

+ KD︸︷︷︸
Shrinkage

)

Ours (K > N) KN2D + (P − 1)KND︸ ︷︷ ︸
Linear systems

+ PN · (KD log(D)︸ ︷︷ ︸
FFTs

+ KD︸︷︷︸
Shrinkage

)

Ours (K ≤ N) K3D + (P − 1)K2D︸ ︷︷ ︸
Linear systems

+ PN · (KD log(D)︸ ︷︷ ︸
FFTs

+ KD︸︷︷︸
Shrinkage

)

Table 1: Cost of our approach and other recent methods.

3.2. Convergence

For two datasets of different size, we plot the empirical
convergence of the proposed algorithm and compare it to
the state of the art in Fig. 1. In both cases we learnK = 100
filters.

The first dataset is the fruit datasets [22] with N = 10
images. In this case, we have K > N . The proposed
algorithm converges in 13 iterations whereas [3, 4] has a
slowly decreasing objective and was fully converged after
about 300 iterations. To be able to compare objective val-
ues, all compared methods here are implemented using cir-
cular convolution, with edge-tapering applied to make the
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Figure 1: Convergence for two datasets (left N = 10 images, right N = 100). The proposed algorithm converges to a better
solution in less time than competing methods.

convolution circular. Only the central part of the convolu-
tion without a padding of kernel size M is included in the
objective values. Note that the solution of our algorithm is
not only found in fewer iterations, but it also converges to a
solution that has a lower objective. The objective combines
the data fitting term as well as the sparsity term. We used the
same sparsity weighting (from [3, 4]) for the comparison,
although the same qualitative convergence was measured
for different weights.

We also plot the convergence in an absolute time scale
demonstrating the achieved speedup. We have further com-
pared our method to [3, 4] with our factorization strategy
from the first line in Eq (11). While this strategy improves
the speed of their method since the inverses in each iter-
ation are done more efficiently, the performance does not
reach that of our method.

For the second dataset, we have randomly sampled N =
100 images of size 100×100 from a city scene (dataset and
original image in the supplement). In this case K ≤ N and
N,K are large. Thus, solving the linear systems becomes
the dominating cost (see Table 1) and the benefit of caching
(which cannot be done in [3, 4]) becomes even more appar-
ent. Hence, especially for large datasets, our method con-
verges faster and usually finds a better optimum. Note that
we are already comparing to [3, 4] with our improved fac-
torization strategy from the first line in Eq (11).

We also compare convolutional coding to patch-based
sparse coding. One of the main challenges are large
datasets, for which most patch-based methods become in-
feasible. Consider learning from 10 images with 1000 ×
1000 pixels each. Incorporating all patches into the learning
requires 10 million training patches. K-SVD, for example,
could not handle that much data on our computer, so we
ran a comparison for 10 100× 100 pixel images. Using all
patches in the training set and 100 iterations, K-SVD took
13.1 hours to converge whereas our method only took about
4.5 minutes (both on an Intel Xeon E5/Core i7 machine with
132 GB RAM).

In addition to the convergence analysis above, we also
show the evolution of the filters throughout the learning pro-
cess in Fig. 2 for the fruit dataset. Initially, the filters seem

Figure 2: Visualization of filters learned from fruit dataset
after 1, 7, 8, and 13 iterations. The evolution goes from ran-
dom patterns over Gaussian blob-like structures and even-
tually converges to filters that bear similarity to Gabor
patches.

random and then turn into Gaussian blob-like structures af-
ter a few iterations. After about 8 iterations, the observed
structures are very similar to those frequently occurring in
patch-based dictionary learning methods, whereas the filters
eventually converge to Gabor-like shapes.

4. Learning Features
4.1. Filter Learning

We trained our filters on the fruit and city datasets [22]
with local contrast normalization applied. Figure 3 shows
the resulting filters after convergence (ours after 13 itera-
tions, Bristow after 300 iterations).

Although the filters look similar at first glance, our re-



Figure 3: Filters learned on the city and fruit datasets [22].
We show thumbnails of the datasets along with filters
learned with the proposed method (left) and with that de-
scribed in [3, 4]. In both cases, our method finds a local
optimum with an objective that is 3 − 4× lower than com-
parable methods.

sults contain fewer dataset-specific features, which makes
them more general as we demonstrate for reconstructions
of other types of images in Sec. 5.1.

4.2. Boundary Conditions

Eq. 3 is an elegant formulation that allows for general
boundary conditions to be integrated into the learning and
also the reconstruction steps. Usually, we mask out the
boundary so that it does not contribute to the objective
function. As seen in Fig. 4, the boundary is still recon-
structed via extrapolated data fitting — lines and other high-
frequency structures continue across the image boundary
but quickly fall off thereafter.

4.3. Learning from Sparse Data

The mixing matrix M in Eq. 3 not only allows for gen-
eral boundary constraints but for any type of linear operator
to be applied. In Fig. 5, we demonstrate that this can be used
for learning filters from incomplete data. We subsequently
use the filters learned from incomplete measurements of an

Figure 4: The proposed formulation allows us to use non-
circular boundary conditions, as demonstrated for two ex-
amples. In practice, the regions outside the image boundary
(red) are extrapolated but do not affect the objective.

Subsampling 90 % 70 % 50 % 30 % 10 %
PSNR 23.2 dB 21.3 dB 19.2 dB 16.5 dB 14.8 dB

Figure 5: Learning from sparse observations. The top two
rows show examples for 50% sampling. The original im-
ages are shown in the left column, randomly subsampled
observations in the center, and reconstructions of the entire
image using filters learned from these sparse observations
on the right. Bottom table and filters: evaluation of the
learned filters for different subsampling rate of the data. We
show 16 out of the total 100 learned filters for each sam-
pling rate above the table. Please see the supplement for
the full set of filters. One can see that for less than 50%
sampling, the reconstruction quality significantly drops due
decreasing filter quality.

image to inpaint the missing parts of that image and evalu-
ate the achieved peak signal-to-noise ratio for varying lev-
els of incompleteness. As is expected, the quality of the
reconstructions drops with a decreasing amount of observa-
tions. Nevertheless, learning filters from incomplete mea-
surements may be interesting for many applications (e.g.



Figure 6: Inpainting example showing: original image (left), randomly sampled incomplete observations (center left), re-
construction with filters learned with the proposed algorithm (center right), and filters from [3, 4] (right). In addition to this
example, we evaluate the reconstruction quality for a larger dataset in Fig. 7.

Image 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
PSNR ours 23.46 25.60 24.64 24.66 30.13 28.10 24.42 24.97 22.07 26.15 25.90 20.76 24.20 24.06 23.60 24.28 22.26 26.03 21.26 28.36 22.89 21.52
PSNR [3, 4] 23.06 24.58 24.28 24.71 29.40 27.27 23.99 24.62 21.79 25.13 25.22 20.50 23.92 23.57 23.37 23.91 21.77 25.74 21.10 27.80 22.74 21.42

Image 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
PSNR ours 23.21 25.35 24.69 24.70 29.88 27.82 24.24 25.44 21.88 26.29 26.05 20.55 24.26 23.80 23.46 24.58 21.90 25.86 21.16 28.11 22.96 21.43
PSNR [3, 4] 22.91 24.68 24.44 24.72 29.33 27.28 23.81 25.21 21.60 25.72 25.58 20.33 23.92 23.44 23.03 24.32 21.55 25.70 21.00 27.72 22.62 21.35

Figure 7: Reconstruction quality for filters learned with the proposed algorithm (tables, center row) and the filters proposed
in [3, 4] (tables, bottom row). All reconstructions are performed for 50% subsampling. The upper table shows the recon-
struction results with the filters learned from the fruit dataset from [22], the lower one shows the reconstructions with the
filters from the city dataset. The dataset consists of 22 images, none of which are part of the training set for learning the
filters. With the exception of image 4, our algorithm results in higher-quality reconstructions for both filter sets.

adaptive filter learning for demosaicking), but is currently
not supported by any existing (efficient) method for convo-
lutional sparse coding. Fig. 5 shows that even for subsam-
pling rates of up to 50%, the learned filters and quality of
the inpainted reconstructions are reasonably good.

5. Reconstruction
In this section, we evaluate the proposed algorithm for

reconstructing signals when the filters are either already
learned or known a priori. Reconstruction problems are
solved for all filters with the code update step from Alg. 2.

5.1. Validation of Reconstruction

Fig. 6 shows an example image reconstructed from in-
complete measurements. This is an inpainting problem,
which we test with filters learned from the fruit database.
We compare reconstruction quality using filters learned
with the proposed method and filters learned with the
method described in [3, 4]. Not only do our filters lead to
a better reconstruction around edges and sharp features, but

our framework allows us to solve this inpainting problem
without sacrificing performance in the CSC solver, which
was not possible in previous work due to the “Fourier trick”.
The experiment in Fig. 7 evaluates reconstruction quality
for a dataset consisting of 22 images and, with a single ex-
ception, shows improved quality for both filter sets learned
on the city and fruit dataset compared to previous work.

5.2. Non-normalized Data

In most results, we show contrast-normalized examples.
However, non-normalized data can be intuitively handled in
two ways. Either the filters are directly learned from non-
normalized training data or a low-frequency term for the
DC offset is added to the set of filter after learning. Typi-
cal Gabor-like filters with different DC offsets are observed
for the former approach. The latter approach can be inter-
preted as adding a smoothness prior in the form of the low-
frequency term rather than rigorously enforcing sparsity. A
reconstruction then has to jointly solve for the filter coeffi-
cients as well as the low-frequency term, which is shown in
Fig. 8. We have also compared this approach with a state-



Figure 8: Inpainting non-normalized data: randomly-
subsampled, incomplete observations (left), reconstruction
with the proposed filters (center and right).
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Figure 9: Reconstructions for known convolutional basis.
The filters in this example are sampled from 1D Gaussians
(top left) and used to fit a convolution model to a sparse set
of samples (top right). The same experiment is performed
in 2D, where a target signal is corrupted by noise (bottom
left), subsampled (bottom center), and then reconstructed
from only 6.25% of the noisy measurements (bottom right).

of-the-art compressive sensing method from Dong et al. [8].
Using the same dataset from Fig. 7 (50% random sampling
with non-normalized data) their method achieves a mean
PSNR of 23.5 dB while ours achieves 29.0 dB. This pre-
liminary results suggests that further investigation of sparse
convolutional coding might lead to many fruitful applica-
tions even outside of the low-level feature learning.

5.3. Reconstruction with Known Basis

We also evaluate the proposed method for fitting con-
volutional models to sparse and noisy measurements when
the filters are known a priori. Recent examples of these
types of reconstructions have appeared in the computational
imaging domain where the employed basis is motivated by

physical models (e.g., [11, 12]). In general, physically-
motivated convolutional sparse coding may have a wide
range of applications in radar, sonar, ultrasound and seismic
imaging, but we leave a detailed evaluation of these applica-
tions to future work. Figure 9 demonstrates reconstructions
of sparsely-sampled data in 1D and 2D. Filters are sampled
from a Gaussian distribution and the measurements of the
2D example are further corrupted by iid Gaussian noise with
a standard deviation of σ = 0.01. This experiment demon-
strates the utility of CSC to non-feature-learning-type ap-
plications, such as general Gaussian mixture models. The
proposed method is capable of recovering the latent signal
with a high quality from only 6.25% of the samples.

6. Discussion

In summary, we propose a new method for learning and
reconstruction problems using convolutional sparse coding.
Our formulation is flexible in allowing for proper boundary
conditions, it allows for feature learning from incomplete
observations, or any type of linear operator applied to the
estimation. We demonstrate that our framework is faster
than the state of the art and converges to better solutions.

Future Work Although already faster than existing meth-
ods, our formulation is inherently parallel and the runtime
could be significantly improved by an efficient GPU im-
plementation. It would be interesting to evaluate learn-
ing and reconstructing features in higher-dimensional prob-
lems, such as 3D hyperspectral image data [15] or 4D light
fields [17]. Finally, it would be interesting to apply the
proposed framework to more complex hierarchical convo-
lutional structures and networks [13, 22] that could be par-
ticularly useful for high-level computer vision applications,
such as recognition.

Conclusion Convolutional sparse coding is a powerful
framework that has the potential to replace or supplement
popular patch-based learning and reconstruction methods.
These are applicable to a wide range of computer vision
problems, such as feature learning, denoising, inpainting,
and demosaicking. With the proposed method, we hope
to contribute a practical approach to solving general CSC
problems efficiently and in the most flexible manner.
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