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Figure 1: We introduce a new computational imaging system that allows for metric radial velocity information to be captured instantaneously
for each pixel (center row). For this purpose, we design the temporal illumination and modulation frequencies of a time-of-flight camera (left)
to be orthogonal within its exposure time. The Doppler effect of objects in motion is then detected as a frequency shift of the illumination,
which results in a mapping from object velocity to recorded pixel intensity. By capturing a few coded time-of-flight measurements and adding a
conventional RGB camera to the setup, we demonstrate that color, velocity, and depth information of a scene can be recorded simultaneously.
The results above show several frames of two video sequences. For each example, the left-most frame shows a static object (velocity map is
constant), which is then moved towards (positive radial velocity) or away from (negative velocity) the camera.

Abstract

Over the last few years, depth cameras have become increasingly
popular for a range of applications, including human-computer in-
teraction and gaming, augmented reality, machine vision, and med-
ical imaging. Many of the commercially-available devices use
the time-of-flight principle, where active illumination is temporally
coded and analyzed in the camera to estimate a per-pixel depth map
of the scene. In this paper, we propose a fundamentally new ima-
ging modality for all time-of-flight (ToF) cameras: per-pixel radial
velocity measurement. The proposed technique exploits the Dop-
pler effect of objects in motion, which shifts the temporal illumina-
tion frequency before it reaches the camera. Using carefully coded
illumination and modulation frequencies of the ToF camera, object
velocities directly map to measured pixel intensities. We show that
a slight modification of our imaging system allows for color, depth,
and velocity information to be captured simultaneously. Combin-
ing the optical flow computed on the RGB frames with the meas-
ured metric radial velocity allows us to further estimate the full
3D metric velocity field of the scene. The proposed technique has
applications in many computer graphics and vision problems, for
example motion tracking, segmentation, recognition, and motion
deblurring.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Digitizing and scanning

Keywords: computational photography, time-of-flight

1 Introduction

Pioneers of photography, including Eadweard Muybridge and Har-
old “Doc” Edgerton, advanced imaging technology to reveal other-
wise invisible motions of high-speed events. Today, understanding
the motion of objects in complex scenes is at the core of computer
vision, with a wide range of applications in object tracking, seg-
mentation, recognition, motion deblurring, navigation of autonom-
ous vehicles, and defense. Usually, object motion or motion par-
allax are estimated via optical flow [Horn and Schunck 1981]: re-
cognizable features are tracked across multiple video frames. The
computed flow field provides the basis for many computer vision
algorithms, including depth estimation. Unfortunately, optical flow
is computationally expensive, fails for untextured scenes that do not
contain good features to track, and it only measures 2D lateral mo-
tion perpendicular to the camera’s line of sight. Further, the unit
of optical flow is pixels; metric velocities cannot be estimated un-
less depth information of the scene is also available. For the par-
ticular application of depth estimation, many limitations of optical
flow estimation can be overcome using active illumination, as done
by most structured illumination and time-of-flight (ToF) cameras.
With the emergence of RGB-D imaging, for example facilitated by
Microsoft’s Kinect One1, complex and untextured 3D scenes can be
tracked by analyzing both color and depth information, resulting in
richer visual data that has proven useful for many applications.

In this paper, we introduce a new approach to directly imaging ra-
dial object velocity. Our approach analyzes the Doppler effect in
time-of-flight cameras: object motion towards or away from the
camera shifts the temporal illumination frequency before it is re-
corded. Conventional time-of-flight cameras encode phase inform-
ation (and therefore scene depth) into intensity measurements. In-
stead, we propose Doppler Time-of-Flight (D-ToF) as a new ima-
ging mode, whereby the change of illumination frequency (corres-
ponding to radial object velocity) is directly encoded into the meas-
ured intensity. The required camera hardware is the same as for

1microsoft.com/en-us/kinectforwindows/



c��ventional time-of-flight imaging, but illumination and modula-
tion frequencies are carefully designed. We can combine depth and
velocity imaging using either two time-of-flight cameras or using
the same device by alternating the modulation frequencies between
successive video frames; color images can be obtained with a con-
ventional camera.

Our technique offers a fundamentally new imaging modality that is
ideally suited for fast motion. Optical flow applied to conventional
RGB video is a complimentary technique: together, optical flow
and D-ToF allow for the metric 3D velocity field to be estimated,
which is otherwise not easily possible. In general, however, D-ToF
is independent of the RGB flow and works robustly for cases where
optical flow often fails, including untextured scenes and extremely
high object velocities. We also discuss a mode for simultaneous
range and velocity imaging. As with standard ToF imaging, our
method requires a few subframes to be captured with different mod-
ulation signals. Using appropriate hardware (multi-sensor cameras
or custom sensors with different patterns multiplexed into pixels of
a single sensor), the method could be implemented as a true snap-
shot imaging approach. In our prototype system, we instead use
rapid time-sequential acquisition of the required subframes, which
is a common strategy for regular ToF imaging. In summary, this
paper makes the following contributions:

• We introduce D-ToF as newmodality of computational photo-
graphy that enables instantaneous radial velocity estimation.
Using multiple captures or implemented with multi-sensor
setups, D-ToF records velocity, range, and color information.

• We derive a mathematical framework for velocity estimation
with time-of-flight cameras, implement a prototype time-of-
flight imaging system, and validate the proposed model ex-
tensively in simulation and with the prototype.

• We evaluate the imaging system using a range of different
types of motion, for textured and untextured surfaces as well
as indoors and under strong outdoor ambient illumination.

• We demonstrate that the velocities measured with our system
can be combined with RGB flow, allowing for the metric 3D
velocity field to be estimated on a per-pixel basis.

1.1 Limitations

As a fundamentally new imaging modality, D-ToF implemented
with our experimental hardware has several limitations. Fore-
most, the resolution of the PMD sensor in our prototype is lim-
ited to 160 × 120 pixels and the signal-to-noise ratio (SNR) of the
measured, Doppler-shifted signal is low. Together, these limita-
tions result in low-resolution and noisy footage. We apply state-
of-the-art denoising strategies which filter out most of the noise
but sometimes result in “blobby” images. Further, D-ToF requires
two frames to be acquired with different modulation frequencies.
Currently, we capture these frames in sequence, which results in
slight misalignment between the frames observed as velocity arti-
facts around depth discontinuities. However, there is a clear path to
addressing all of these challenges: low-cost time-of-flight sensors
providing QVGA or higher resolutions and significantly improved
noise characteristics are already on the market. With access to sig-
nal control of illumination and on-sensor modulation, D-ToF could
be readily implemented on high-quality consumer ToF cameras.
Combining two synchronized ToF cameras with different frequen-
cies would allow for misalignment artifacts to be mitigated.

Nevertheless, D-ToF shares other limitations with ToF, including
the need for active illumination, limited range, and problematic
processing in the presence of strong ambient illumination or ob-

jects with dark albedos, shadowed regions, and global illumination
effects.

2 Related Work

Doppler-effect Measurements Since Christian Doppler dis-
covered that the spectrum of astronomical objects shifts depend-
ing on their velocity [Doppler 1842], the Doppler effect has found
widespread use in astronomical imaging, meteorology, traffic law
enforcement, radiology, healthcare, and aviation. Doppler spectro-
scopy, for example, measures radial velocity of otherwise undetect-
able planets by observing wavelength shifts of their respective stars.
The rate of expansion of the universe can be estimated by Dop-
pler spectroscopy as well. Laser Doppler velocimetry is a com-
mon technique in healthcare, for example to measure blood flow.
Usually, this technique uses two crossed, coherent laser beams to
create a small volume of bright and dark fringe patterns; the rate
of intensity fluctuation of particles moving through this volume
gives rise to their velocity. Doppler radar is widely used in po-
lice speed guns, although gradually being replaced by lidar-based
systems. Doppler lidar is also commonly used in many meteoro-
logical applications, such as wind velocity estimation. One com-
mon limitation of all Doppler measurements is that only movement
along one particular direction, usually the line-of-sight, can be de-
tected. All of these applications rely on the wave nature of light or
sound, and therefore require coherent illumination or precise spec-
troscopic measurement apparatuses. We are the first to exploit inco-
herent, amplitude-modulated illumination and inexpensive time-of-
flight (ToF) cameras for instantaneous imaging of both velocity and
range. Our approach is a full-field imaging method, meaning that it
does not require the scene to be sequentially scanned unlike most
existing Doppler radar or lidar systems that only capture a single
scene point at a time.

Computational Time-of-Flight Photography With consumer
time-of-flight cameras such as Microsoft’s Kinect One becoming
widely available, research on computational time-of-flight imaging
has become an emerging area throughout the last few years. New
approaches to capture and visualize light transport have allowed
physical lighting effects to be recorded and replayed [Velten et al.
2013; Heide et al. 2013] that the field of computer graphics has thus
far only been able to simulate. Detailed analyses of temporal light
transport in the frequency domain [Wu et al. 2012] or in the pres-
ence of global illumination [O’Toole et al. 2014; Gupta et al. 2014]
have facilitated entirely new imaging modalities. For example, dif-
ficult inverse problems, such as non-line-of-sight imaging [Kirmani
et al. 2009; Velten et al. 2012; Heide et al. 2014a], BRDF estima-
tion [Naik et al. 2011], descattering [Heide et al. 2014b], and multi-
path separation [Kadambi et al. 2013], have become tractable.

In this manuscript, we analyze an effect not studied in prior work on
computational time-of-flight imaging: the Doppler shift of objects
in motion. We derive a mathematical framework and build a camera
prototype implementing the described techniques; together, they al-
low us to optically encode object velocity into per-pixel measure-
ments of modified time-of-flight cameras. By combining multiple
cameras, we also demonstrate how to capture color, range, and ve-
locity images simultaneously.

A technique loosely related to ours was recently proposed by Pand-
harkar et al. [2011]. Whereas they use a pulsed femtosecond il-
lumination source to estimate motion of non-line-of-sight objects
from differences in multiple captured images, we use the Doppler
effect observed with conventional time-of-flight cameras within a
single captured frame. In effect, their technique is related to optical
flow methods that track features between successive video frames.



N��	�
�� Description

g(t) illumination signal at the light source
s(t) illumination signal incident at the ToF sensor
fψ(t) sensor reference signal
ωg illumination frequency
ωf on-sensor modulation frequency
ψ programmable phase offset for sensor signal
φ depth-dependent phase shift in illumination
∆ω Doppler frequency shift
iψ(t

′) continuous, low-pass-filtered sensor image
iψ[t

′] discretely-sampled, low-pass-filtered sensor image

Table 1: Notation table.

Optical Flow in Computer Vision Optical flow [Horn and
Schunck 1981; Barron et al. 1994] is a fundamental technique in
computer vision that is vital for a wide range of applications, in-
cluding tracking, segmentation, recognition, localization and map-
ping, video interpolation and manipulation, as well as defense. Op-
tical flow from a single camera is restricted to estimating lateral
motion whereas the Doppler is observed only for radial motion to-
wards or away from the camera.

Wei et al. [2006] and Hontani et al. [2014] have demonstrated how
to use correlation image sensors to estimate optical flow of fast mo-
tion. Although correlation image sensors are conceptually similar
to ToF cameras, their methods are more similar in spirit to con-
ventional optical flow by targeting lateral, rather than radial mo-
tion. In contrast to these methods, we analyze the Doppler effect
of object motion to estimate per-pixel radial velocity without the
need for optical flow. Lindner and Kolb [2009] as well as Hoegg
et al. [2013] estimate lateral optical flow to compensate for object
motion between the sequentially-captured ToF phase images from
which depth is usually estimated. We can apply a similar strategy to
mitigate alignment artifacts when subframes are captured sequen-
tially, but the flow is not a core part of D-ToF.

3 Review of Time-of-Flight Imaging

In this section, we first review the conventional ToF image form-
ation model for static scenes and then analyze how it behaves for
objects in motion.

Time-of-flight cameras operate in continuous wave mode. That is,
a light source illuminates the scene with an amplitude-modulated
signal that changes periodically over time. Sinusoidal waves are
often used in the ToF literature to approximate the true shape of
the signals. Although we derive a full model for arbitrary periodic
signals in the supplemental material, we restrict the derivation in
this article to the sine wave model for simplicity of notation. Hence,
the light source emits a temporal signal of the form

g(t) = g1 cos(ωgt) + g0, (1)

where ωg is the illumination frequency. Assuming that the emitted
light is reflected along a single, direct path by a stationary diffuse
object at distance d, and that it is observed by a camera co-located
with the light source, the signal reaching the camera is

s(t) = s1 cos

(
ωs

(
t−

2d

c

))
+ s0

= s1 cos(ωst+ φ) + s0,

(2)

with s0 = g0 + b, where b is the ambient illumination. In the case
of a stationary scene, the frequency at the camera is the same as
the illumination frequency: ωs = ωg . In Equation 2, the amplitude

s1 combines the illumination amplitude g1, geometric factors such
as the square distance falloff, as well as the albedo of the object.
Due to the propagation distance, the phase of the received signal is
shifted by φ = −2d/c · ωg .

Theoretically, s(t) could be directly sampled to estimate φ. How-
ever, illumination frequencies are usually in the order of tens to
hundreds of MHz. Conventional solid state image sensors only
provide sampling rates that are orders of magnitudes lower, and are
hence inadequate for direct sampling of the phase. To overcome
this limitation, time-of-flight camera pixels provide a crucial fea-
ture that makes them distinct from conventional camera pixels: be-
fore being digitally sampled, the incident signal is modulated by a
high-frequency, periodic function fψ(t) within each pixel. This on-
sensor modulation is physically performed by an electric field that
rapidly redirects incident photons-converted-to-electrons into one
of two buckets within each pixel. The phase ψ and frequency ωf of
the modulation function are programmable. The general equation
for the modulated signal is thus

ĩψ(t)=fψ(t)·s(t) = cos(ωf t+ψ) · (s1 cos(ωst+φ)+s0)

=
s1
2

cos((ωf − ωs)t+ ψ − φ)+ (3)

s1
2

cos((ωf + ωs)t+ ψ + φ) + s0 cos(ωf t+ ψ).

Usually, ToF cameras are operated in a homodyne mode where the
illumination frequency and the reference frequency are identical:
ωf = ωg = ω. Under the common assumption of a stationary
scene, we moreover get ωs = ωg = ω, and Equation 3 simplifies
to

ĩψ(t) =
s1
2

cos(ψ−φ)+
s1
2

cos(2ωt+φ+ψ)+s0 cos(ωt+ψ).

(4)
To model the discretely sampled quantities measured by the sensor,
we must account for a finite integration (exposure) time. The ex-
posure time T of all cameras acts as a low-pass filter on the mod-
ulated signal before it is discretized by the sampling process of the
sensor. Since the exposure time is usually significantly longer than
the wavelength of the modulated signal T ≫ 1/ω, all frequency-
dependent terms in Equation 4 vanish:

iψ(t
′) =

(
ĩψ ∗ rectT

)
(t′) ≈

s1
2

cos(ψ − φ). (5)

The temporal low-pass filter rectT (·) is convolved with the incident
signal — an operation that is analogous to the finite integration area
of each sensor pixel in the spatial domain2. Finally, the modulated
and low-pass-filtered signal is discretely sampled. Since Equation 5
is independent of the time of measurement t′, depth and albedo can
be robustly estimated.

To distinguish the continuous function iψ(t
′) from its discretiza-

tion, we denote the latter as iψ[t
′]. For depth estimation, at least

two measurements i0[t
′] and iπ/2[t

′] are necessary that are usu-
ally recorded in quick succession, such that phase and depth can be
estimated as

φest[t
′] = tan−1

(
iπ/2[t

′]

i0[t′]

)
, and dest[t

′] =
cφest[t

′]

2ω
. (6)

The same measurements are also used to estimate the albedo:

s1est[t
′] =

√
(i0[t′])

2 +
(
iπ/2[t′]

)2
. (7)

2In the optics community, the low-pass filter resulting from spatial

sensor integration is known as the detector footprint modulation transfer

function [Boreman 2001].



F���e 2: Depth imaging. For static scenes, measurements are un-
ambiguous: different phase shifts result in unique intensity meas-
urements (top). For dynamic scenes, the Doppler shift results in a
low-frequency beating pattern that makes measured intensities am-
biguous, and hence prevents reliable depth estimation (bottom).

More detailed discussions of the basic principle of operation of
time-of-flight cameras can be found in the literature [Lange and
Seitz 2001; Gokturk et al. 2004; Büttgen and Seitz 2008].

Time-of-Flight for Objects in Motion

The conventional time-of-flight image formation model breaks
down when objects of interest move with a non-negligible radial
velocity. In this case, the illumination frequency undergoes a Dop-
pler shift [Doppler 1842] when reflected from an object in motion.
The illumination arriving at the sensor is now frequency-shifted to
ωs = ωg + ∆ω, where the change in temporal frequency ∆ω de-
pends on the radial object velocity as well as the illumination fre-
quency:

∆ω =
v

c
ωg. (8)

Figure 3: Velocity imaging. Illumination ωg and modulation ωf
frequencies are designed to be orthogonal within the exposure time
T . For static scenes (top), this particular choice of frequencies will
integrate to zero. The Doppler shift of moving scenes destroys the
orthogonality and results in an approximately linear relationship
between radial velocity and recorded intensity (bottom).

For intuition, we consider the case of an approximately constant
velocity v throughout the exposure time. If we continue to assume
a homodyne setting with ωf = ωg = ω, Equation 3 can be used to
derive a new version of the low-pass-filtered sensor image (Eq. 5)
for moving scenes:

iψ(t
′) ≈

s1
2

cos(−∆ωt′ + ψ − φ). (9)

Note that this equation is now dependent on the time of measure-
ment. Unfortunately, the introduced temporal intensity variation
makes it more difficult to estimate phase and therefore also depth.
In audio signal processing, this time-dependent low-frequency arti-
fact is known as a beating pattern. We illustrate it in Figure 2.

The phase estimate from Equation 6 is then distorted as

φest[t
′] = tan−1

(
iπ/2[t

′]

i0[t′]

)
+∆ωt′, (10)



w���� the distortion ∆ωt′ linearly depends on the (unknown) ob-
ject velocity. Note that, in practice, the estimated phase for moving
objects corresponds to its average throughout the exposure.

To summarize, in the homodyne setup, where the frequency of the
light source and the frequency of the camera reference signal are
identical, the Doppler shift introduced by moving objects results
in mismatched frequencies on the image sensor. This situation is
closely related to hetereodyne time-of-flight imaging (e.g., [Dor-
rington et al. 2007]), which generalizes the conventional homodyne
capture mode to arbitrary combinations of illumination and sensor
modulation frequencies. For static scenes, the heterodyne imaging
mode (e.g., [Conroy et al. 2009]) may be beneficial in certain situ-
ations, but a major limitation of heterodyne ToF is that multiple
(>2) measurements have to be captured to reliably estimate phase
and depth. Since the beating pattern is usually of very low fre-
quency, a significant amount of time needs to pass between the two
measurements for reliable phase estimation. For moving objects,
the necessity to capture multiple images would place severe con-
straints on the velocity. To facilitate reliable velocity estimation,
we derive a new computational time-of-flight imaging methodo-
logy in the following section. Inspired by the general concept of
orthogonal frequency-division multiplexing (OFDM, e.g. [Li and
Stuber 2006]), D-ToF uses illumination and on-sensor modulation
frequencies that are orthogonal within the exposure time of the cam-
era. Using this choice of frequencies along with a newly-devised re-
construction method, we demonstrate the first approach to per-pixel
radial velocity estimation.

4 Doppler-based Velocity Imaging

As illustrated in Figure 2 (bottom), the low-frequency beating pat-
tern created by the Doppler effect makes it difficult or impossible
to capture reliable Doppler frequency and phase information. Con-
sider the following example: a road cyclist travels at a speed of
v = 10m

s
towards the camera. For an illumination frequency of

50 MHz (i.e. ωg = 50 · 106 · 2π/s), the observed Doppler shift is
only

∆ω =
v

c
ωg =

10m
s

300 · 106m
s

· 50 · 106
2π

s
≈ 1.67

2π

s
(11)

A frequency shift of only 1.67 Hz may seem small enough to be
safely ignored. However, we show in the following that even such
a minute change contains valuable information that can be used for
velocity estimation.

4.1 Velocity Imaging via Orthogonal Frequencies

Inspired by multiplexing techniques in digital communication, we
devise an unconventional way to extract velocity information from
the small Doppler shift observed by a ToF camera. We can inter-
pret the camera system as a communication channel and consider
the illumination a carrier signal. The carrier is optically modified
by moving objects — we observe a change in carrier amplitude,
phase, and frequency. The secondary modulation in the sensor fol-
lowed by a low-pass filter of the exposure time corresponds to the
demodulation process in communication. Conventional communic-
ation channels use orthogonal frequencies; any inter-carrier inter-
ference (which could be caused by a frequency drift) is a polluting
signal (see e.g. [Li and Stuber 2006]). For Doppler ToF, we delib-
erately design the frequencies in the receiver and transmitter to be
orthogonal, such that the (usually polluting) inter-carrier interfer-
ence carries the desired velocity information.

For the application of direct velocity imaging, we would like to
ensure that the measured signal for a stationary object is zero (or a

constant intensity offset). We can achieve this by operating the ToF
camera in heterodyne mode with two orthogonal frequencies ωg
and ωf . While any two sine waves with frequencies ωg 6= ωf will
be orthogonal for sufficiently long integration times, this is not the
case for finite integrals (exposures) in the presence of low frequency
beating patterns. Designing both frequencies to be orthogonal is
done by setting

ωg = k
2π

T
and ωf = l

2π

T
with k, l ∈ N, k 6= l, (12)

i.e. having the exposure time T be an integer multiple of the period
of both signals. It is then easy to show from Equation 3 that

iψ =

∫ T

0

ĩψ(t) dt = 0 (13)

for stationary objects (ωs = ωg). In practice, we set l = k + 1
and we set k = ωgT/2π, which depends on T and the desired
frequency ωg .

Given these two orthogonal frequencies we now use the inter-
carrier interference to extract valuable information about the Dop-
pler shift. We achieve this by computing the ratio of a heterodyne
measurement and a homodyne measurement. Using only the low-
frequency terms from Equation 3, this ratio can be expressed as3:

r =

∫ T
0

cos(ωf t+ ψ) · (s1 cos((ωg +∆ω)t+ φ) + s0) dt
∫ T
0

cos(ωgt+ ψ) · (s1 cos((ωg +∆ω)t+ φ) + s0) dt

≈

∫ T
0

s1
2

cos((ωf − ωg −∆ω)t+ ψ − φ) dt
∫ T
0

s1
2

cos(−∆ωt+ ψ − φ) dt

=

s1
2(ωf−ωg−∆ω)

[sin((ωf − ωg)t−∆ωt+ ψ − φ)]T0
s1

−2∆ω
[−∆ωt+ ψ − φ)]T0

=
−∆ω

ωf − ωg −∆ω

·
sin((ωf − ωg)T −∆ωT + ψ − φ)− sin(ψ − φ)

sin(−∆ωT + ψ − φ)− sin(ψ − φ)︸ ︷︷ ︸
=1

≈
−∆ω

ωf − ωg
(14)

since (ωf − ωg)T = (k − l) 2π, and∆ω ≪ ωf − ωg .

Figure 4 shows the model derived here. On the left side, we see
the full model without any approximations (i.e. without neglecting
high frequency components in Eq. 14). Although the image form-
ation is nonlinear, for a relative large range of metric velocities it
is very well approximated (Fig. 4, center left) by our linear model
(Eq. 14). We experimentally verify the model using our camera
prototype (Fig. 4, right). With known, orthogonal illumination and
modulation frequencies ωg, ωf , it is therefore straightforward to
compute the Doppler shift ∆ω from Equation 14. The ratio image
r can be interpreted as a direct measurement of the instantaneous
per-pixel radial velocity.

We note that this approach still requires two measurements: one
heterodyne image and one homodyne image. There are several
possible solutions for either acquiring these truly simultaneously,
or they can be acquired in quick succession. For instantaneous
measurements, two synchronized ToF sensors can be mounted in
a co-axial setup; one of the sensors is modulated with the same

3Without loss of generality, we assume an exposure interval of [0 . . . T ]
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object moving at a specific velocity was programmed into the illumination frequency for this particular experiment.

frequency as the light source (ωg), while the other uses a slightly
different frequency ωf 6= ωg . This approach is similar in spirit to
multi-sensor HDR imaging [Tocci et al. 2011].

Instead of using two distinct sensors, it would also be possible to
multiplex pixels with two different modulation frequencies onto the
same image sensor, either in alternating scanlines or in a checker-
board pattern. Again, this concept is similar in spirit to techniques
that have been proposed for HDR cameras [Yasuma et al. 2010; Gu
et al. 2010].

A third possibility is to rapidly alternate between two modulation
frequencies using a single ToF camera. In this case, the measure-
ments are not truly instantaneous, and alignment problems may oc-
cur for very fast motions. However, the two measurements can be
taken immediately after each other, as fast as the camera hardware
allows, e.g. at 30 or 60 Hz. We follow this approach as it only re-
quires a single ToF camera. Note that, similar to heterodyne depth
estimation [Dorrington et al. 2007], the Doppler shift can also be
estimated directly from the low-frequency beating pattern, but at
the cost of requiring multiple measurements that are much more
widely spaced in time (hence not suitable for velocity estimation).

Finally, we note that the model from Equation 14 only holds for
sinusoidal modulation functions. If other periodic signals are being
used, additional harmonic frequency components are introduced,
which distort the measurements for both stationary and moving tar-
gets. However, these offsets are systematic and can be calibrated
for a specific ToF camera/lights source combination (see Section 5,
and the supplemental material).

4.2 Simultaneous Range and Velocity

In many applications it may be useful to obtain both velocity and
range measurements at the same time. As in standard ToF imaging,
this can be achieved by capturing a second homodyne measurement
with the phase offset by π/2. Simultaneous range and velocity ima-
ging therefore requires a total of three measurements: a heterodyne
image with ψ = 0, a homodyne image with ψ = 0, and a homo-
dyne image with ψ = π/2.

As discussed in Section 3, motion introduces a velocity-dependent
distortion∆ωt′ of the depth measurement (Eq. 10). However, since
the distortion linearly depends on the Doppler shift ∆ω, which is
known from the velocity estimation step (Eq. 14), we can now cor-
rectly estimate the phase delay (and hence the depth) from Equa-
tion 10. This only requires an additional calibration step to obtain
∆ωt′ for a specific velocity, which corresponds to estimating the
time offset t′ between the start of the exposure time and the refer-
ence time for signal generation in the camera and light source.
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Figure 5: Depth-dependent offset introduced by higher-order fre-
quency components for a range of modulation frequencies. These
offsets are calibrated in a one-time offline process and then used to
correct the raw phase measurements on a per-pixel basis.

As mentioned, simultaneous velocity and range imaging requires
three distinct measurements. We note that the illumination signal
is the same for all three measurements, only the reference signal
for the camera changes. As in the case of velocity-only imaging,
this means that all three measurements can potentially be acquired
at the same time using either multiple sensors with a shared optical
axis, or a special sensor design with interleaved pixels. If neither
option is available, rapid frame-sequential imaging is also possible.

5 Implementation

Hardware For all physical experiments, we use an experimental
time-of-flight camera system that comprises a custom RF modu-
lated light source and a demodulation camera based on the PMD
Technologies PhotonICs 19k-S3 sensor (see Fig. 1). The light
source is an array of 650 nm laser diodes driven by iC-Haus con-
stant current driver chips, type ic-HG. We use a PMD CamBoard
nano development kit with a clear glass sensor that has the near
IR bandpass filter removed, in combination with an external 2-
channel signal generator to modulate the sensor and synchronize
the light source. Our setup is similar to commercially-available
time-of-flight cameras and the proposed algorithms could be eas-
ily implemented on those. Unfortunately, developers usually do not
have access to illumination and modulation frequencies of these
devices, requiring the construction of custom research prototype
cameras. The maximum illumination and demodulation frequency
of our prototype is 150 MHz, but we run all of the presented results
with 30 MHz. The modulation signals are nearly sinusoidal, but
contain multiple low-amplitude harmonic components. To avoid
systematic errors in depth and velocity estimation, these compon-
ents must be calibrated as described in the following.

Correcting for Higher-order Harmonics Our camera prototype
has the drawback that the periodic modulation functions are not
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�����e 6: Experimental verification of the imaging system for vary-
ing object velocities and depths (left) as well as velocity-dependent
behavior for a range of different pixel locations on the sensor
(right). All of this data is captured using a large planar target per-
pendicular to the camera and sweeping the illumination frequency
(to simulate different Doppler shifts) and phase (to simulate differ-
ent object distances).
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Figure 7: Experimental validation of velocity estimation using a
fan with adjustable rotation speed (three settings). We measure the
ground truth velocity of the rotating blades (top left) by analyzing
audio recordings (top, lower left). The top right plot shows the ve-
locity measured by D-ToF compared to the ground truth for a vary-
ing rotation speed. As the speed becomes larger, estimation errors
increase to a maximum of about 0.2 m/s. The bottom row shows
the unprocessed full-field measurements of the homodyne (left) and
the heterodyne (right) frequency setting with the pixel indicated for
which we plotted the velocities on the top right.

perfectly sinusoidal, although they are very close. In addition to
the fundamental frequency, this introduces higher-order harmonic
components to the modulation signal. Please refer to the supple-
mental material for a detailed derivation of the image formation in
these conditions. Unfortunately, the higher-order components are
generally not orthogonal, thus they can cause a phase-dependent
offset. We calibrate this offset for different modulation frequencies
and phase shiftsψ using a static target. The depth-dependent offsets
are plotted for different modulation frequencies in Figure 5.

This offset is calibrated in an offline process and raw phase meas-
urements can be corrected digitally using a lookup table. Note that
for relatively low modulation frequencies, such as 30 MHz, we find
a fairly large depth range (around 1 m) to be almost independent of
this offset. In practice, it is therefore relatively easy to remove the
higher-order frequency components.

Calibrating Phase Response As is standard practice in time-
of-flight cameras, we calibrate the physical intensity response for
different phase shifts φ in an offline calibration. Following [Lind-
ner and Kolb 2006], we measure the physical intensity response for
a phase sweep of the illumination frequency and fit a fifth-order
polynomial to the measurements. This is used as a lookup table for
converting phase to depth rather than solving Equation 6 directly.
With our prototype, we measure a notable zeroth-order compon-
ent of the fitted polynomial, corresponding to fixed pattern phase
noise. This is easily corrected with the lookup table. Any other
illumination-specific terms, for example introduced by the baseline
between camera and light source, are automatically calibrated with
the described procedure and do not require additional processing.

Verification of Calibration Procedure The two calibration pro-
cedures described above are performed for all spatial locations on
the sensor independently. To verify our calibration routines, we
image a static target and apply a frequency and phase sweep to
the modulation function, simulating objects at different velocities
and depths. The results shown in Figure 4 (left) demonstrate that
the measured intensities for a constant phase but varying Doppler
shift follow the model derived in the Section 4. Other than a small
amount of noise, which is mostly due to a relatively low signal-to-
noise ratio, the curve is linear and behaves as predicted. In Figure 6
(left), we verify experimental measurements for a range of different
phase offsets in the modulation frequency. This simulates objects at
various depths, as indicated in the legend. Finally, we also test the
velocity-dependent behavior for a range of different pixels over the
sensor location and show results in Figure 6 (right). The remaining
variance over pixel locations and phases is minimal.

Figure 7 shows another experiment that we used to verify the ac-
curacy of our prototype D-ToF camera. In this example, we ad-
justed the speed of a rotating fan and imaged its blades such that,
throughout the time it takes for a single blade to move across a
pixel, forward motion is observed by that pixel. The exposure time
of the ToF camera was set to 1.5 ms and the fan was captured from
a frontal perspective (raw homodyne and heterodyne measurements
shown in Fig. 7 bottom). Wemanually measured the slope of the fan
blades, which is constant over the entire blades. The radius of the
plotted position was measured, allowing us to calculate the “ground
truth” velocity when the rotation speed of the fan is known. Since
the exact rotation speed is not actually known, we measure it by
mounting a small pin on one of the blades and mounting a piece of
flexible plastic in front of the fan, such that the rotating pin strikes
the plastic exactly once per revolution, creating a distinct sound.
We record the sound (sampled at 44 KHz) of this setup to estimate
the ground truth velocity of the fan blades, observed by one pixel,
which is compared with the corresponding D-ToF estimate (Fig. 7,
top right). For this experiment, the estimation error is always below
0.2 m/s. Errors are mainly due to the low SNR of the measured
Doppler-shifted signal.

Subframe Alignment Although the required heterodyne and ho-
modyne shots could be captured simultaneously using multi-sensor
configurations, they have to be captured in an alternating fashion us-
ing the single-sensor solution used in this paper. Since we are deal-
ing with moving objects, the individual shots cannot be assumed
to be perfectly aligned, which results in velocity artifacts around
edges in the scene. We can mitigate, although not completely re-
move, these artifacts by computing a SIFT flow on the raw data and
warping them to a reference frame. While not perfect, the SIFT
flow delivered sufficiently good warps for most captures.



��� !e 8: Complex scene with ambient illumination and a large depth range. The velocity is robustly estimated within the range of the
illumination (approx. 5m inside), even in outdoor settings.

Denoising With our system, we capture an extremely small fre-
quency shift (in the Hz range) relative to the modulation frequency
(the MHz range). Additionally, the quantum efficiency of emer-
ging time-of-flight sensors is still far from that of modern solid state
sensors [Erz and Jähne 2009]. Therefore, the slight Doppler shift
in our prototype is strongly affected by Poisson noise. Standard de-
noising methods fail in strong Poisson noise scenarios. We apply
a binning-based non-local means denoising strategy to all captured
velocity maps (see Fig. 9). Please see the supplement for more de-
tails and denoising comparisons.

��� !e 9: Velocity maps color-coded in grayscale. The maps com-
puted from raw measurements (top) are corrupted by Poisson noise.
To account for this, we apply a binning-based non-local means-type
denoiser to the reconstructed velocity images (bottom).

6 Experimental Results

We show results captured with our prototype imaging system in
Figures 1, 8, 10, 11, 12, 13, 14, and in the supplement. The res-
ults validate the proposed imaging system for a variety of challen-
ging indoor and outdoor scenes. Color images are recorded with the
same exposure time as the time-of-flight camera. Most of the scenes
have a slight red tint, because we work with eye-safe red illumin-
ation in the visible spectrum. Like current commercial ToF cam-
eras, future implementations of this system would most likely use
invisible, near infrared wavelengths to encode velocity and depth
information. The reconstructed velocity maps are color-coded; ab-
solute units are indicated in the color bars. As expected, static
scenes result in a constant velocity map whereas velocity is directly
encoded in the measurements and subsequently reconstructed for
each sensor pixel independently. In addition to the velocity maps,
Figures 1, 11, 13, 14 also show the corresponding depth maps that
can be estimated from an additional capture as well as the velocity
maps (see Sec. 4.2).

The selection of scenes shows a wide range of motion types that

��� !e 10: This result shows a periodic motion of a hand along the
optical axis. The static scene on the left results in no response of the
sensor, whereas forward (center) and backward (right) movement
result in positive and negative responses, respectively.

can be reconstructed with the proposed method, but it also high-
lights several challenges of D-ToF and ToF in general. D-ToF re-
quires two frames to be captured, and they must be aligned if re-
corded with a single camera. In some instances, such as Figures 10
and 12, the alignment is challenging and any errors will propag-
ate into the velocity maps, especially around depth-discontinuities.
These artifacts could be mitigated by optimizing the camera firm-
ware to minimizing switching time between the subframes or by
using two co-axial ToF cameras. Objects with dark albedos, as for
example observed in Figure 11, are challenging for any ToF method
because only a small amount of the coded illumination is reflected
back to the camera. Similarly, shadows are very challenging and
often result in either no depth/velocity estimation or errors (sweater
in Fig. 8 and regions between fingers in Fig. 13). Whereas some
of these limitations can be overcome with better hardware, others
are inherent to the time-of-flight approach. Please see Section 8
for a more detailed discussion and the supplemental video for more
results.

7 Towards the 3D Velocity Field

Optical flow computed from conventional video sequences estim-
ates the 2D projection of the 3D flow field onto the image plane.
The radial component is usually lost. Furthermore, optical flow
is an ill-posed problem and may fail in many scenarios. Doppler
ToF addresses two problems of optical flow: first, it can help in
cases where optical flow fails either due to large displacements or
missing scene structures. Second, our technique also helps in cases



"#$%&e 11: This result shows periodic motions in z for a textured
object. Although the estimated velocity is mostly correct, shadows
and dark scene parts are challenging for robust velocity estimation.

"#$%&e 12: Even extremely fast motion, such as a bullets shot with
a spring airsoft gun, can be captured with our system. The airsoft
gun is being advertised as shooting bullets with 99 m/s; we measure
a radial velocity of 98.2 m/s (average of the peak pixels).

"#$%&e 13: We envision a wide range of applications for our tech-
nique, including gaming and human-computer interaction.

where the optical flow estimation is successful; in this case, we can

"#$%&e 14: Physical props for gaming, such as ping pong balls fired
with this toy gun, could be tracked and enable new HCI techniques.

recover the 3D metric flow by combining metric radial velocity and
the 2D optical pixel flow.

Figure 15 shows an example scene where regular optical flow [Liu
2009] as well as SIFT-flow [Liu et al. 2008] fail due to limited struc-
ture in the scene. Our method can successfully capture the velocity
of the objects and could also lead to a proper segmentation of the
scene. Note that having additional depth estimates for conventional
flow would also only be of limited help since flat surfaces also do
not deliver enough features for correspondence matching.

Figure 16 shows a scene where the optical flow estimate is reas-
onable. In this case, the orthogonal component that our method
captures completes the 2D spatial flow estimates and uniquely de-
termines the full metric 3D flow. Given the optical flow estimates
fx, fy for the horizontal and vertical image coordinates, one can

compute the metric velocity vectors vx = fx·Z
F
, fy = fx·Z

F
, where

F is the focal length of the lens and Z the corresponding depth
estimate (see [Honegger et al. 2013]). In conjunction with the velo-
city estimate vz in the orthogonal direction along the optical axis,
the full 3D metric flow is V = (vx, vy, vz). An example is shown
in Figure 16. Please note that the 3D flow field is only as reliable as
the estimated radial velocity and the RGB 2D flow. If one of them
fails, so will the 3D flow.

8 Discussion

In summary, we propose a new computational imaging modality
that directly captures radial object velocity via Doppler Time-of-
Flight Imaging. We demonstrate a variety of experimental results
captured with a prototype camera system for different types of mo-
tions and outdoor settings. The mathematical models are extens-
ively validated in simulation and experiment. We also show the op-
tional combination of footage captured using an RGB camera with
the depth and velocity output of our coded time-of-flight camera.
Together, this data represents simultaneous per-pixel RGB, depth,
and velocity estimates of a scene and allows for the 3D velocity
field to be estimated. We envision applications in a wide range
of computer vision problems, including segmentation, recognition,
tracking, super-resolution, spatially-varying motion deblurring, and
navigation of autonomous vehicles.

D-ToF is complimentary to optical flow. It allows for the depth
bias of xz-flow to be removed and enables recording of the metric
3D velocity field of the scene. However, if only radial velocity is



'()*+e 15: Failure case of optical flow for a moving, but untextured
scene (left). Optical flow [Liu 2009] and SIFT flow [Liu et al. 2008]
for two succeeding color frames are shown in the second and third
column; the 2D flow vectors are color-coded with the shown color
wheel (insets). Both methods cannot recover the true 2D motion
of the fan and wrongly segment the scene. Our orthogonal velocity
estimate can resolve this problem and properly segment the scene.

Figure 16: Towards 3D flow: when optical flow succeeds, the full
3D metric flow is uniquely estimated from both 2D pixel flow and
the radial velocity maps. The top images show a frame where op-
tical flow computed reasonable estimates. The bottom shows full
3D velocity estimate for different views. Note that the optical flow
helps us to determine that fan’s velocity is slightly rotated to the
upper right, where the center of rotation is located (bottom left).

required, our technique can also be used stand-alone, independent
of optical flow.

Limitations and Future Work Commercially available ToF
sensors today are low-resolution and their quantum efficiency
and noise characteristics are not comparable with modern CMOS
sensors. We expect future generations of ToF sensors to deliver
significantly higher image quality, which would directly benefit D-
ToF as well. Higher modulation frequencies would directly im-
prove the signal-to-noise ratio in our setup, because the Doppler
effect is proportional to these frequencies. For eye-safe operation,
we use diffused laser diodes that operate in the visible spectrum in
combination with a ToF sensor that has its visible spectrum cutoff
filter removed. The laser illumination is therefore visible in all of
the RGB images as a red tint. Future implementations of our sys-
tem would operate the time-of-flight camera in the near infrared
spectrum, as is common practice in commercial ToF cameras. Fi-
nally, all presented techniques could easily be implemented on con-
sumer time-of-flight cameras with the appropriate level of access to
the system firmware or driver software. We hope that vendors will
give researchers and developers the opportunity to modify modula-
tion and illumination frequencies of their devices in the near future.
With access to these frequencies, we could port the proposed tech-
niques to available consumer devices.

Conclusion Time-of-flight cameras have entered the consumer
market only a few years ago, but transformed the way machines
perceive the world. Human-computer interaction, medical imaging,
robotics and machine vision, navigation for self-driving cars and
quadcopters, and many other fundamental computer vision tasks
have seen dramatic improvements using these devices. With Dop-

pler Time-of-Flight, we hope to contribute a fundamentally new
imaging modality that will have an impact on all of these applica-
tions. The possibility of implementing the proposed techniques on
existing consumer devices makes Doppler Time-of-Flight a partic-
ularly attractive computational photography technique.

9 Appendix

In this appendix, we derive expressions for the proposed imaging
systems using phasor notation. These may be more intuitive for
some readers, especially those familiar with the communication lit-
erature. In particular, we assume orthogonal illumination and mod-
ulation frequencies and derive the measured intensity of a dynamic
scene (see Eqs. 13, 14) as
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(15)

Ã, B̃ are the complex phasor amplitudes containing the amplitude
and phase dependency. δkl is the Kronecker delta; for perfectly
static scenes, this expression is zero. Note that phasors can usu-
ally not be multiplied. By using the complex conjugate, this is
possible while implicitly assuming that high frequency can be ig-
nored [Ceperley 2015].

Assuming that objects are moving, a Doppler shift δ/T is intro-
duced. Frequency shifts like this have been analyzed for OFDM as
inter carrier interference. We get the following complex interfer-
ence pattern Iδ:
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