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1. Additional Details for Wigner PSFs
The Wigner Distribution Function (WDF) is a joint representation of space and spatial frequency. It can be considered as

the local frequency spectrum of the signal [2]. Spatial frequencies are linked to the direction of propagation θ of light rays as
u = sin θ

λ . Hence, the WDF is sometimes also referred to as the ray spread function. It has been explored in the context of
physical optics [3, 1, 2] and also geometric optics or light fields [9, 7].

The effect of an aperture with transmittance t(ν) on an incident WDF corresponds to the transformation of the WDF at
the aperture plane:

Wo (ν, u) =
1

2π

∫
Wt (ν, u− ui)Wi (ν, ui) dui, (1)

where Wi (ν, u) and Wo (ν, u) represent the input and output WDF (directly at the aperture plane without propagation), u
are spatial frequencies, which relate the coordinate system of the light field at the sensor to the WDF at the aperture as

u =
sin θ

λ

paraxial
≈ tan θ

λ
=
x− ν
λd

. (2)

where d is the distance between aperture and sensor planes. As outlined in the primary text, the WDF of the aperture is
defined as
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2π
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2
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t∗
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ν′
)

e−iuν
′
dν′. (3)

To be consistent with the two-plane light field parameterization, we must relate the light field on the sensor to its equivalent
Wigner representation on the aperture plane, which is expressed as

l (x, ν) = W

(
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λd

)
. (4)

By combining Equations 1 and 4, we can derive Equation 3 of the primary text as
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)
∗xli (x, v) (5)

In conclusion, the aperture’s effect on the light field can be modeled as a convolution along the x dimension in the two-plane
light field parametrization, as detailed in the primary text.
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Figure 1. 3D simulation with additional row showing reconstruction results with scanned pinholes. The first and third rows show direct
measurements with the proposed approach and conventional, scanned light fields. For the latter, an additional reconstruction step is usually
unnecessary. The proposed method requires an optimization problem to be solved (result shown in second row), which is higher-resolution
than the conventional approach. However, the same reconstruction could also be applied to conventional light fields (bottom row), but the
WPSFs for this case are not easily invertible so the recovered image quality remains low.

2. Additional Simulation Results
We show an extended version of primary Figure 4 in Figure 1. The first three rows of the figure were shown in the primary

text; the bottom row shows the reconstruction result using the conventional light field measurements. While the deconvolution
does slightly improve upon the non-reconstructed light field, it does not completely recover the high resolution information
seen in row 2. This further supports the argument that the WPSFs of the proposed acquisition scheme capture more and
fundamentally different information of the scene than a conventional light field capture does.

3. Alternative reconstruction methods
3.1. Log-domain Optimization

As an alternative to the reconstruction outlined in the primary text, we can also follow approaches for high dynamic range
image fusion [5] and optimize the objective function outlined in primary Equation 6 in the log-domain. For luminance, a log-
domain objective function operates in a perceptually linear space and may improve the perceived quality of reconstructions
from noisy and low-light measurements. The log-domain objective is

minimize
l

|| log (i)− log (PWl) ||22 subject to 0 ≤ l, (6)



Equation 6 is a weighted, log-domain least squares problem, an optimization problem we solve with gradient descent (GD).
The GD method provides an iterative solution wherein the estimate l(q) at iteration q is given by

l(q) = l(q) − α(PW)
T diag

(
ζ

PWl

)(
log
(
PWl(q−1)

)
− log (i)

)
, (7)

where α = 0.5 is the gradient step size. We can combine the log-domain optimization with more sophisticated weighting
schemes, for example that proposed in [6]

ζ(i) =

{
i− imin for i ≤ 1/2(imin + imax)
imax − i for i ≥ 1/2(imin + imax)

, (8)

where ζ(i) is the weight of a pixel i in the measured images, imax and imin are the maximum and minimum pixel values.
Experimental results for the log-domain optimization are shown in the supplementary video.

3.2. Total variation regularization

In the primary paper we mention the potential use of priors to enhance reconstruction; here we describe this possibility in
more detail. To incorporate the total variation prior [8], we optimize the objective:

min
l

1

2
||i−PWl||22 + Γ(l), subject to 0 ≤ l, (9)

where Γ(l) is the regularizer modeling the total variation of the latent images. The regularizer is modeled as Γ(l) = λ||Dx||1,
with D = [DT

x DT
y ]T . D represents the finite differences approximation of the horizontal and vertical image gradients:

Dxl = vec(dx ∗ l), dx =

 0 0 0
0 −1 1
0 0 0

 , Dyl = vec(dx ∗ l), dy =

 0 0 0
0 −1 0
0 1 0

 , (10)

where the operator vec(·) vectorizes a 2D image and dx and dy are the convolution kernels representing forward finite
differences. To optimize Eq. 10, we utilize the alternating direction method of multipliers (ADMM) [4] and rewrite the
problem as:

min
l

1

2
||PWl− i||22︸ ︷︷ ︸

f(l)

+λ||z||1︸ ︷︷ ︸
g(z)

subject to Dl− z = 0, l > 0. (11)

Following the general ADMM stategy, the Augmented Lagrangian of Eq. 11 is formed as:

Lρ(l, z,y) = f(l) + g(z) + yT (Dl− z) +
ρ

2
||Dl− z||22. (12)

The ADMM method applies the iterative update rules:

l(q+1) = arg min
l

Lρ(l, z
(q),y(q)) = arg min

l
f(l) +

ρ

2
||Dl− z(q) +

1

ρ
y(q)||22

z(q+1) = arg min
z

Lρ(l
(q+1), z,y(q)) = arg min

z
g(z) +

ρ

2
||Dl(q+1) − z +

1

ρ
y(q)||22

y(q+1) = y(q) + ρ(Dl(q+1) − z) (13)

The iterations are performed iterately with respect to the variables; more details can be found in [4]. In our experiments, we
choose λ = 0.001, and we increase ρ each iteration by a factor of 1.2 from 5 to a maximum of 1000.

In Figure 2 we show the results of applying this reconstruction method to a resolution test chart placed in focus. This
method successfully smoothes out the unwanted noise while preserving the edges of the test bars. This scene also allows us
to further emphasize the increase in resolution, in this example at the focal plane, using our variable-aperture method.
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Figure 2. Summary of results with the 1951 USAF resolution test chart scene. The first row shows captured measurements using our
diffraction- aware apertures. The second row shows reconstruction of a 15- view light field using ADMM with TV regularization for 25
iterations. The third row shows a zoomed- in and cropped region of the reconstructed light field. Compare this with the fourth row, which
shows the same zoomed- in and cropped region of the pinhole views. Since this image is completely in focus, there is no parallax between
the views. The images shown in rows 1 and 2 correspond to an object size of approximately 1.1×1.1 mm.
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