
Supplementary Material:
Focus 3D: Compressive Accommodation Display

In this document we provide additional results and implementation details in support of the primary text. Appendix A
presents additional analysis of decomposed masks patterns and the results of a wide field of view display simula-
tion. Appendix B provides details of the prototype display construction and pseudocode for the utilized GPU-based
nonnegative tensor factorization (NTF) solver and supporting functions.

A Extended Results

A.1 Simulations of a Wide Tracked Field of View

Figure 15 in the primary text demonstrates motion parallax on our Focus 3D prototype. However, as noted in Section
5 of the primary text, the field of view was only moderate and was limited by the distortions of the inexpensive lens
chosen for the prototype. In Figure S.1, we provide monoscopic wide field of view simulations for a tracked user
under an identical optical configuration, but with the assumption of a high quality lens. The simulations demon-
stration focusablility over a wide 56◦ field of view (136 cm laterally) for a user 127 cm from the display using six
time-multiplexed frames.

A.2 Decomposition of Light Field into Time-Multiplexed Masks

Section 3.2 and Figure 6 of the primary text illustrate how NTF exploits correlation between multiple views, allowing
a light field with N distinct views to be compressed into fewer than N time-multiplexed frames. Figure S.2 provides
an additional light field mask decomposition to help the reader gain insight into the compressive nature of NTF. The
figure presents the masks corresponding to the light field displayed in Figure 3 of the primary text, which consists
of two sets of 5×5 views placed eye distance (6.4 cm) apart. These 50 views are compressed into 12 pairs of mask
patterns that are displayed in sequence on the front LCD layer and backlight. In the right hand column of Figure S.2,
each backlight pixel corresponds to one of 50 views. Note that in the time-multiplexed frames, most of the backlight
pixels have been illuminated to some degree – indicating that the NTF compression exploits correlation between
both the closely spaced views for each eye and the views between eyes – resulting in brighter images than if the
50 views were simply displayed in sequence and illuminated by a single backlight pixel at a time. As shown in
Figure 12 of the primary text, the compressed light field has enough fidelity to allow a camera to focus at different
depths within the scene.

B Implementation Details

B.1 Additional Details on the GPU-based NTF Implementation with Refractive Element

This section documents our GPU-based implementation of nonnegative tensor factorization (NTF) for Focus 3D,
which is based on the NTF of Wetzstein et al. [2012]. As explained in Section 4.2 of the primary text, most of the
functions map to the fixed graphics pipeline. NTF is implemented using OpenGL and a set of CG/GLSL shaders;
pseudocode is listed below. We assume the Focus 3D display consists of L light-attenuating layers, each displaying F
frames in rapid succession, and a backlight behind a lens. The original light field is assumed to consist of V different
views. As the display of the decomposed layers is a time-critical operation – requiring a frame rate that matches the
monitor refresh rate – our online solver is implemented with two modes: one which uses the GPU to factor the light

Figure S.1: Simulation of a wide field of view display with correct accommodation for a tracked user. Five view-
points, laterally shifted parallel to the display, are shown in the rows while the left and center columns show the
front and rear of the shark in focus, respectively.

Figure S.2: Mask patterns for a light field supporting correct accommodation in each eye. Left column: mask
patterns displayed on the front LCD layer. Right column: backlight patterns. Rows: Three frames from the 12 frame
time-multiplexed sequence.

field tensor, displaying the solved frames slowly, and a second which disables the iterative optimization and displays
solved frames in quick succession. Future implementations might use multiple GPUs or dedicated computational
hardware to perform these steps simultaneously.

The decomposition routines and supporting functions are documented on the following pages, implementing weighted
nonnegative tensor factorization, as discussed in Section 3.1.2 of the primary text and in greater detail in Wetzstein
et al. [2012]. These routines are followed by the main display loop for synchronized rendering of the temporally-
multiplexed layers and backlight with the monitor refresh rates.

Algorithm NTF - Content-Updating Thread

variables FBO LF[V], FBO LF REC[V], FBO LAYERS[L][F], FBO LF TMP[V], FBO LAYER TMP[2], FBO TMP[2]
variables FBO BACKLIGHT[F], FBO BACKLIGHT TMP[2], FBO TMP[2]

function threadDisplayLoop()
// draw light field
for all light field views v

activate FBO LF[v]
set perspective v
drawScene(); // render desired 3D scene (e.g., a teapot)

end
// factorize light field using NTF
NTF();

end

function NTF()
for all iterations i

// update the layers
for all layers l

// draw current estimate of LF into rec buffers
drawLightFieldFromLayersRec();
for all frames f

// draw layers into LF tmp buffers, but leave out current layer
drawLightFieldFromLayersTmp(l);
// compute numerator for multiplicative NTF update
activate FBO LAYER TMP[1]
activate accumulation buffer
for all light field views v

set perspective v as projective texture matrix
activate CG SHADER MULT2TEXTURES AND PROJECTIVE TEXMAPTHEM(FBO LF[v], FBO LF TMP[v])
draw 2D quad

end
deactivate FBO LAYER TMP[1]
// compute denominator for multiplicative NTF update
activate FBO LAYER TMP[2]
activate accumulation buffer
for all light field views v

set perspective v as projective texture matrix
activate CG SHADER MULT2TEXTURES AND PROJECTIVE TEXMAPTHEM(FBO LF REC[v], FBO LF TMP[v])
draw 2D quad

end
deactivate FBO LAYER TMP[2]
// update current layer for current frame
activate FBO LAYERS[l][f]
activate CG SHADER MULT2TEXTURES DIVIDEBYOTHER (FBO LAYERS[l][f], FBO LAYER TMP[1], FBO LAYER TMP[2])
draw 2D quad
deactivate FBO LAYERS[l][f]

end
end
// update the backlight
// draw current estimate of LF into rec buffers
drawLightFieldFromLayersRec();
for all frames f

// draw layers into LF tmp buffers, but leave out backlight
drawLightFieldFromLayersTmp(−1);
// compute numerator for multiplicative NTF update
for all light field views v

activate FBO TMP[1]
set perspective v as projective texture matrix for lens position
activate CG SHADER MULT2TEXTURES AND PROJECTIVE TEXMAPTHEM(FBO LF[v], FBO LF TMP[v])
draw 2D quad
deactivate FBO TMP[1]
//refract from lens onto backlight
refractReverse (FBO TMP[1],FBO TMP[2],v)
activate accumulation buffer
activate FBO BACKLIGHT TMP[1]
bind FBO TMP[2]
draw 2D quad
deactivate FBO BACKLIGHT TMP[1]

end
// compute denominator for multiplicative NTF update
for all light field views v

activate FBO TMP[1]
set perspective v as projective texture matrix for lens position
activate CG SHADER MULT2TEXTURES AND PROJECTIVE TEXMAPTHEM(FBO LF REC[v], FBO LF TMP[v])
draw 2D quad
deactivate FBO TMP[1]
//refract from lens onto backlight
refractReverse (FBO TMP[1],FBO TMP[2],v)
activate accumulation buffer
activate FBO BACKLIGHT TMP[2]
bind FBO TMP[2]
draw 2D quad
deactivate FBO BACKLIGHT TMP[2]

end
// update current layer for current frame
activate FBO BACKLIGHT[f]
activate CG SHADER MULT2TEXTURES DIVIDEBYOTHER (FBO BACKLIGHT[f], FBO BACKLIGHT TMP[1], FBO BACKLIGHT TMP[2])
draw 2D quad
deactivate FBO BACKLIGHT[f]

end
end

end

Algorithm NTF - Additional Helper Functions

function drawLightFieldFromLayersRec()
convertAllLayersAndBacklightToLOG();
for all views v

for all frames f
activate FBO TMP
activate accumulation buffer
for all layers l

draw layer l, textured with FBO LAYERS[l][f]
end
refractForward(FBO BACKLIGHT[f], FBO TMP2,v)
draw backlight projected onto lens, textured with FBO TMP2
deactivate FBO TMP
activate FBO LF REC[v]
activate accumulation buffer
activate CG SHADER DRAW EXPONENTIAL TEXTURE (FBO TMP)
deactivate FBO LF REC[v]

end
end
convertAllLayersAndBacklightFromLOG();

end

function drawLightFieldFromLayersTmp(int leaveOutLayerX)
convertAllLayersAndBacklightToLOG();
for all views v

for all frames f
activate FBO TMP
activate accumulation buffer
for all layers l

if leaveOutLayerX!=l
draw layer l, textured with FBO LAYERS[l][f]

end
end
if (leaveOutLayerX!=-1)

refractForward(FBO BACKLIGHT[f], FBO TEMP2,v)
draw backlight projected onto lens, textured with FBO TEMP2

end
deactivate FBO TMP
activate FBO LF TMP[v]
activate accumulation buffer
activate CG SHADER DRAW EXPONENTIAL TEXTURE (FBO TMP)
deactivate FBO LF TMP[v]

end
end
convertAllLayersAndBacklightFromLOG();

end

Algorithm NTF - Lens Refraction Functions

function refractForward(FBO backlightFBO, FBO lensFBO, float eyePos[3])
for each pixel p1 on lensFBO

r1 = ray from eyePos to pixel p1
r2 = ray r1 refracted through lens
p2 = pixel on backlightFBO that intersects with r2
lensFBO[p1] = backlightFBO[p2]

end
end

function refractReverse(FBO lensFBO,FBO backlightFBO, float eyePos[3])
clear backlightFBO
for each pixel p1 on lensFBO

r1 = ray from eyePos to pixel p1
r2 = ray r1 refracted through lens
p2 = pixel on backlightFBO that intersects with r2
backlightFBO[p2] = backlightFBO[p2] + lensFBO[p1]

end
end

Algorithm NTF - Main Display Routine

variables FBO LAYERS[L][F], FBO BACKLIGHT[F]

function mainDisplayLoop()
// draw layers of current frame
for all layers l

set viewport for l
activate FBO LAYERS[l][f]
draw textured 2D quad

end
// draw backlight of current frame
set viewport for backlight
activate FBO BACKLIGHT[f]
draw textured 2D quad
// cycle through frames
f = (f < F) ? f+1 : 0;

end

B.2 Hardware

In this section we provide further details about the physical construction of the prototype Focus 3D display. Refer to
Figure S.3 for imagery corresponding to the following description.

Our challenge is to align multiple light modulating layers (LCD panels) and a large Fresnel lens over a relatively
long distance. We use computer numerical control (CNC) machines to construct the parts required for our hardware.

After removing the LCD panels from their backlight units, we remove the diffusing polarizing film from the front of
each panel, making the LCD suitable for image formation. Acetone is used to remove residual adhesive left on the
surface of the panel. A transparent polarizing film is then secured in place of the removed polarizing film to restore
the intensity modulation capability of the panel.

The LCD panels are mounted on waterjet cut aluminum back planes. We similarly mount the Fresnel lens inside
an acrylic sheet, cut to fit on a lasercutter. Each of these layers is placed on a rail cage and accurately spaced using
lasercut plastic clips. Our rail cage is assembled from waterjet cut 3

8” aluminum posts, fitted to a wooden base cut to
size on a ShopBot CNC mill. Machined alignment holes are then match drilled to ensure the posts and layers slide
smoothly on 1

4” steel rails.

Figure S.3: Prototype assembly montage. Backlight and polarizing films are removed from LCD panels. Aluminum
frames and steel rail system are assembled. LCDs and Fresnel lens are placed on rails for alignment.

Supplementary References

WETZSTEIN, G., LANMAN, D., HIRSCH, M., AND RASKAR, R. 2012. Tensor Displays: Compressive Light Field
Synthesis using Multilayer Displays with Directional Backlighting. ACM Trans. Graph. (SIGGRAPH) 31, 1–11.

	Extended Results
	Simulations of a Wide Tracked Field of View
	Decomposition of Light Field into Time-Multiplexed Masks

	Implementation Details
	Additional Details on the GPU-based NTF Implementation with Refractive Element
	Hardware

