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Fig. 1. We design a sickness predictor to estimate the nauseogenicity of virtual content. In designing the features for the predictor,
we draw on insights from the simulator sickness literature; we also test a theory of sickness that alters the role of object depth as a
feature, and we run an experiment to verify the nature of this interaction with depth. Given the result, we choose as features various
summary statistics based on the interaction between depth and motion speeds in a time-varying VR video. (a) Shown above is the left
viewport for a single frame of one of the videos in our dataset. We calculate (b) disparities and (c) optical flow vectors for each pixel as
measures of the depth and motion, respectively. (d) We represent each pixel in a 3D vector space with axes of disparity, horizontal
velocity, and vertical velocity. This representation is parameterized and binned in various ways to find the best predictor for the video’s
sickness rating. (e) The sickness rating meter displays the sickness rating in a user-friendly way.

Abstract—Virtual reality systems are widely believed to be the next major computing platform. There are, however, some barriers
to adoption that must be addressed, such as that of motion sickness – which can lead to undesirable symptoms including postural
instability, headaches, and nausea. Motion sickness in virtual reality occurs as a result of moving visual stimuli that cause users to
perceive self-motion while they remain stationary in the real world. There are several contributing factors to both this perception of
motion and the subsequent onset of sickness, including field of view, motion velocity, and stimulus depth. We verify first that differences
in vection due to relative stimulus depth remain correlated with sickness. Then, we build a dataset of stereoscopic 3D videos and their
corresponding sickness ratings in order to quantify their nauseogenicity, which we make available for future use. Using this dataset,
we train a machine learning algorithm on hand-crafted features (quantifying speed, direction, and depth as functions of time) from
each video, learning the contributions of these various features to the sickness ratings. Our predictor generally outperforms a naı̈ve
estimate, but is ultimately limited by the size of the dataset. However, our result is promising and opens the door to future work with
more extensive datasets. This and further advances in this space have the potential to alleviate developer and end user concerns
about motion sickness in the increasingly commonplace virtual world.

Index Terms—Virtual reality, simulator sickness, vection, machine learning

1 INTRODUCTION

As immersive virtual reality (VR) systems have become available to
the average consumer, it has become increasingly clear these systems
have transformative potential for how we interact with digital content,
with diverse applications ranging from telesurgery to basic vision re-
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search. However, exposing users to a visual motion stimulus while
they are stationary leads to motion sickness in many users [19]; as
more people experience VR with the growth of the technology, the
incidence of visually induced motion sickness (VIMS) may increase
sharply. Furthermore, having a large field of view, which plays a role
in the increased sense of presence afforded by VR, also makes users
more likely to experience sickness [12]. As VR headset manufacturers
pursue higher immersion, these factors make the problem of sickness
likely to get worse, not better, as time passes. As of today, no com-
plete solution exists that can effectively eliminate sickness in virtual
environments without also removing desirable elements such as vec-
tion. In the absence of such a silver bullet, it becomes useful to at
least quantify the amount of sickness that may occur given a 3D video.
We propose methods of approaching the problem of prediction in a
principled manner, drawing on techniques from machine learning to
improve our performance.

In order to design a dataset and features to feed into our machine
learning algorithm, we first consider the physiological causes of sick-
ness. In particular, VIMS is caused by a visual perception of motion
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Fig. 2. We selected a set of 19 videos with widely varying scene content to create the dataset; next, we asked 96 users to each watch a single video
from this set and answer the Kennedy Simulator Sickness Questionnaire. The Kennedy SSQ scores provide the basis for our ground truth sickness
ratings, which are shown above (dots). A selection of videos across the spectrum of sickness have been highlighted (larger black dots).

when the user is in fact stationary, and can persist for a time even after
the user has left the simulation [19]; a key theory explaining VIMS
is the sensory conflict theory, which posits that sickness arises from
conflicting reports from different sensory inputs, such as the visual
and vestibular systems, to the brain [33]. In addition, the sickness is
worse precisely because of the addition of stereoscopic displays [18],
indicating that this problem may get worse as the display technologies
are improved. Furthermore, over half of healthy adults reported experi-
encing simulator sickness in 3D movies [38], which provide a smaller
field of view (also related to the level of immersion) than near-eye
virtual displays available to consumers.

These feelings of nausea and discomfort brought about by simulator
sickness pose a significant unsolved problem for any content in VR
that involves movement, and imposes a limit on the potential of VR
systems. For example, the Oculus guidelines instruct creators to mini-
mize acceleration or allow reduction of FOV to reduce the possibility
of sickness [28]. Many of these software-only methods for reducing
sickness involve reducing field of view (FOV) [15] or vection, which
may also reduce immersion [12, 19]. In choosing the optimal value
for this tradeoff, one must consider that people are variable in their
susceptibility to VIMS. As such, what is optimal for a moderately
sensitive individual may be highly nauseogenic to another and simply
lack some immersion for a third. Therefore, until some approach exists
that can successfully decouple reduction of sickness from other factors
that also reduce immersion – though counterintuitive, perhaps an extra-
wide FOV approach [40] – it would be useful for users to have some
standardized metric by which they can judge whether or not a video
will induce in them an unacceptable degree of VIMS.

One way of generating this standardized metric would be to use
a standardized questionnaire to rate the sickness felt after a video,
for multiple users, for every video. However, as the demand and
supply for immersive and exciting VR content grows however, such
a method quickly becomes infeasible. We propose instead to follow
this procedure for a varied dataset of stereoscopic 3D videos, and use
the ratings on these videos as the basis for algorithmically rating future
videos. Complicating this is the fact that, while there are models that
attempt to explain how features of a scene contribute to VIMS, it is
unclear how much importance should be assigned a given feature. This
then provides a good fit for a machine learning approach, in which
we statistically determine these relative weightings on hand-crafted
features chosen based on the literature. The resulting weights of the
learned model can be used to predict future videos’ sickness efficiently
at scale, and may also guide understanding of how differing inputs to
the visual system affect VIMS.

The effectiveness of this approach is inherently dependent on the
particular choice of features, but to reduce overfitting on noise in the
data, we must also limit the number of features. We use the literature
and our own tests as guidance on choosing the features over which
to train the predictor. In particular, while velocity and FOV have
been linked directly to sickness [1, 12], the effect of depth had been
unclear due to the possibility of sickness-reducing reference frames [31].

Therefore, we conduct a study to confirm that relative depth of motion
modulates sickness in line with vection. We conclude that velocity and
depth of motion are the most useful features to include, while using a
fixed FOV.

While data seems to suggest that eliminating sickness in virtual
environments without hardware additions (such as galvanic vestibu-
lar stimulation and motion platforms) may not be feasible, we aim to
quantify sickness to make it easier for content developers and users to
predict reactions to video content. Having an objective and automated
quantification process is also an important step towards further under-
standing of the tradeoffs involved in future VR experience design [21].
Our contributions are, in summary, that we:

• Determine that vection and sickness are correlated as a function
of relative motion depth to inform the feature selection process;

• Construct a dataset of stereoscopic 3D videos over which com-
parative analyses of sickness may be performed;

• Build an experimental model for nauseogenicity of 3D video
content using a machine-learning approach.

2 RELATED WORK

2.1 Vection and Visually Induced Motion Sickness
When a person observes a scene, motion of objects in the scene and
their own self-motion both lead to differing patterns of optical flow
on the retina. This optical flow therefore contains information about
the structure of the scene, but also about the direction of the person’s
self-motion [16]. Vection occurs when the information contained in
the optical flow leads a person to perceive self-motion. On the other
hand, physically induced motion sickness is a phenomenon familiar to
many that experience carsickness or seasickness. When users are in a
virtual environment, they experience an analog of physically induced
motion sickness known as visually induced motion sickness (VIMS)
that exhibits the same symptoms as physically induced motion sickness
such as nausea, but also other symptoms such as blurred vision and
headaches [19]. Furthermore, vection and VIMS are usually correlated
with each other to the point that vection may be a prerequisite for VIMS,
though some experiments do suggest that vection can be experienced
without VIMS [23].

Various factors affecting vection and VIMS have been investigated;
for example, the effects of multi-axis motion [4], different motion
trajectories [39] (e.g. linear motion vs rotation in yaw) and velocities [1,
37], and the field of view [12, 23]. Eccentricity is another facet of the
visual stimulus, but it is less clear whether it affects vection. Though
earlier studies suggested that the periphery had a stronger effect on
vection [3, 6], newer studies suggest that the center and periphery are
equal in contribution as long as other factors such as stimulus area are
carefully controlled [26].

In this work, we wish to quantify nauseogenicity of videos, which
primarily provide a visual stimulus to the user; since visual stimuli



and the sickness experienced as a result are mediated by the vection
response of the user, it is important to consider the factors leading to
vection in constructing a varied dataset of videos and a good set of
features. As such, we ensured that our dataset was varied in speeds
and motion trajectories, and that the features we chose consider the
magnitude optical flow in multiple directions. Since eccentricity’s
effect has been called into question, we do not include it among our
features to limit the potential for overfitting. We also chose to not vary
the FOV, since this is not intrinsic to the video content itself, but rather
a function of the hardware.

2.1.1 Theories on Visual Information and Sickness

The sensory conflict theory is one of the main theories explaining the
incidence of VIMS in virtual environments [33]. According to the
sensory conflict theory, VIMS is caused by inconsistencies between
the various streams of information that the brain receives. In this case,
the visual information that facilitates vection comes into conflict with
other sensory inputs which expose the fact that the user is, in reality,
not moving. A similar theory states that the conflict originates not
necessarily from conflicts of the sensory inputs themselves, but rather
between the state of the user suggested by the sensory inputs and an
internal model’s expected state [5]. This also helps explain the effect
of reduced sickness seen in users due to habituation [23].

Another related theory of interest is that of conflicting “rest frames,”
which states that the brain selects a reference frame against which
to compute movement, and conflicts between the rest frames implied
by the visual and other systems is what leads to VIMS [31]. Other
theories to explain VIMS include the postural instability theory and
the eye-movement theory, which state that the causes are changes in
postural stability and optokinetic nystagmus (OKN), respectively [23].
However, these last two theories are less useful in guiding the feature
selection process for our predictor, since they focus primarily on physi-
ological phenomena as opposed to differences in video content. On the
other hand, the rest frame theory has interesting consequences when
considering the effect of depth ordering on vection, as discussed in the
following section.

2.1.2 Effect of Stereoscopic Depth on Vection

Relative stereoscopic object depth is another important factor when
considering how stereoscopic content may affect vection. The afore-
mentioned factors affecting vection (e.g. velocity, trajectory, FOV)
differ from depth in that, while they should be consistent between the
stereoscopic views, they do not depend on the stereoscopic presentation
itself: a “flat” display surrounding the user would still have and be
influenced by these vection stimuli. On the other hand, relative object
depth becomes important particularly when viewing a 3D display. It
has been shown that relative object depth has a strong effect on the per-
ception of vection. The background dominates the perception of motion
direction when in motion, and strongly suppresses vection when static,
regardless of fixation depth or distance separating the foreground from
the background [7,20,25,29]. The foreground motion also has an effect,
in that it can enhance vection when it is static or slightly counter to the
background motion [27]. This foreground–background interaction can
even be present when ground-truth stereoscopic cues are lacking, with
whatever is perceived as background (based on other background-like
qualities such as larger size or peripheral eccentricity) dominating the
perception of motion [29, 34]. This perceived background is a possible
reason why, in the absence of stereoscopic depth ordering, early studies
saw more vection from peripheral eccentricities [26].

Considering again the rest frame hypothesis for sickness, these rest
frames have been primarily used in the context of an independent vi-
sual background [14, 24, 32] that provides a static background element
to reduce sickness. However, the original conception of rest frames
by Prothero [31] allows for reduction of sickness with the rest frame
placed either in the foreground or background. Since foreground static
objects do not suppress vection as background objects do, this presents
a possible venue for sickness reduction without the associated reduction
in vection. Therefore, we investigate whether sickness may be reduced

by using a foreground static object as the reference frame (while main-
taining vection), or whether vection and sickness remain correlated as
a function of depth. Depending on the outcome of this first experiment,
we can then parameterize our feature selection further by dividing the
motion into multiple depth layers.

2.1.3 Optical Flow Algorithms for Vection Estimation
Since optical flow on the retina determines the vection experienced by
a user, it makes sense to consider the optical flow over the duration
of a video shown to the user. For example, Prokop et al. showed that
presenting variable optical flow patterns while someone is walking
leads to instability in their walking pattern, but that they adapt over
time [30] – a response that bears similarities to the postural instability
and habituation associated with VIMS. In our machine learning ap-
proach, we use FlowNet, a convolutional neural network–based optical
flow algorithm [13], and use its outputs to calculate our features.

2.2 Direct Vestibular Stimulation
Direct vestibular stimulation can be used to provide acceleration cues to
the vestibular system, reducing or removing a major source of sensory
conflict. This can be accomplished with varying degrees of efficacy
using galvanic (electrical) stimulation, bone-conducted sound, or air-
conducted sound [11]. By providing the vestibular system with the
correct cues, the resulting reduction in sensory conflict with the visual
motion should reduce VIMS. While this would remove the necessity
of a predictor for videos, this requires extra hardware, introduces new
safety concerns, and at least in the case of sound, can be very distracting.
Unless a safe and effective vestibular stimulation system becomes
available, informing users and content creators of the nauseogenic
potential of videos will remain an important responsibility, which we
aim to do with our machine-learning based approach.

2.3 Sickness Questionnaires
When ascertaining the potential of video content for causing sickness,
we use the Kennedy Simulator Sickness Questionnaire (SSQ) [22] for
users to rate the amount of sickness they felt after each video, and
the Motion Sickness Susceptibility Questionnaire Short-form (MSSQ-
Short) [17] to choose how to weight different users in combining their
individual ratings into a single rating for each video.

The Kennedy SSQ asks participants to rate several symptoms cor-
related to sickness on a 4-point scale (none, slight, moderate, severe).
From the 4-point scale, the Kennedy SSQ defines multiple subscores
and a total score based on weighted addition of those ratings. Further-
more, it is specifically designed to apply to symptoms from simulators
are opposed to real-world motion sickness, allowing us to use it for
determining the nauseogenicity of virtual content.

On the other hand, the MSSQ-Short was designed to correlate well
to how long it takes a given user to experience nausea given a motion
sickness stimulus. It asks users how often they experience motion
sickness in each of nine different situations (never, rarely, sometimes,
frequently), both as a child and in the decade; these are then weighted
and added, excluding situations never experienced in the given time
frames. By using the individual’s motion sickness history, this ques-
tionnaire allows us to account somewhat for the significant individual
differences in motion sickness.

3 USER STUDY: RELATIVE DEPTH AS A FEATURE

For the first experiment, we aim to verify whether the relative depth or-
dering affects sickness in proportion to its effect on vection, or whether
a foreground reference frame interaction prevents sickness even with
high vection from a moving background area. We find that our data
supports the former, suggesting that it is important to consider depth
ordering via its effect on vection when choosing features for machine
learning.

3.1 Subjects
Twelve men and three women, ages 22–34, were recruited for the
study. Informed consent was obtained for all participants and study
procedures were approved by the institutional review board of the host



Fig. 3. (top) For the random dot kinematogram, the user is placed in
the center of two independently rotating concentric spherical shells (as
labeled) of equal width, containing dots subtending a constant visual
angle. (bottom) The naturalistic scenes experienced by users. The near
cluster of asteroids in the space scene has been brightened relative to
the background for illustration.

institution. All subjects had normal or corrected-to-normal vision and
reported no disorders or unusual circumstances with respect to their
hearing or balance, and did not report extreme susceptibility to motion
sickness. Users were also screened for having stereoacuity of at least
40 arcseconds at 1600 with a Randot stereogram, corresponding to a
difference in depth of 0.0200 at that distance for an average viewer.

3.2 Experiment Scenes
The test was run with three different scenes (Fig. 3), each with a
foreground and background section that could rotate independently at
a constant angular acceleration of 1�/s2 starting at 0�/s. Each scene
had one of three conditions in which different combinations of the
foreground and background sections are in motion. We refer to these
later in the text as the foreground motion condition, the background
motion condition, and the both-moving condition.

The first scene is a random dot kinematogram that surrounds the user.
The dots are uniformly dispersed in depth, from 0.75–10 m, and in an-
gular position. The extremes of the depth range are chosen to minimize
the vergence–accommodation conflict by approximately staying within
the zone of comfort for the 1.3 m virtual image distance of the Oculus
DK2 [35]. The dots rotate about the roll axis in a randomly-chosen
direction. The foreground dots are located between 0.75–5.375 m, and
the background dots between 5.375–10 m so that each set of dots has
an equal depth range (and therefore an equal number of dots) as shown
in Fig. 3, top. The dots are sized such that they all subtend the same
visual angle, leaving only binocular disparity as a depth cue, to ensure
that the kinematogram tests primarily for stereoscopic depth ordering.
The other scenes are more naturalistic (Fig. 3, bottom). The second
scene is the carousel, in which the user is placed near the center of a
carousel in the middle of a plaza. Unlike the other scenes, the user
experiences rotation in yaw, with the direction chosen such that the
carousel rotates in the “natural” direction of the horses relative to the
surroundings. The carousel is the foreground, and the surroundings are
the background. The carousel’s parts are within about 1.2–5 m, and the
nearest surrounding object is over 20 m away. The third scene is outer
space, which is again rotation about the roll axis in a randomly chosen
direction. Here, the foreground is a cluster of asteroids from 0.7–2 m,
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Fig. 4. The scatterplots show the vection and sickness ratings of each
user in the three scenes, with motion condition indicated. The average
ratings for each motion condition across all scenes is shown in the bar
graph. As expected, the foreground motion condition has low ratings. The
other two are similar in the relationship between vection and sickness,
suggesting that nearby reference frames do not reduce sickness.

and the rest of space is the background, with the nearest object being
50 m away. Since the zone of comfort is defined in dioptric and not
metric distances, these scenes also largely stay within the ideal range,
despite 50 m seeming much further away.

3.3 Experiment Setup

All tests for this experiment were run using an Oculus Rift DK2 head-
mounted display. This provides a resolution of 960⇥1080 per eye, with
a 75 Hz refresh rate and a nominal 100� vertical FOV. All scenes were
designed in Unity, and users were asked to only look in the forward
direction, without head movement, for the duration of the trials.

When conducting the experiment, we first briefed the users on what
vection and motion sickness are, then explained the reporting procedure.
Each trial was displayed for 60 seconds after which the display blanked
to gray. At the end of the trial, users used a controller to select the
amount of vection they experienced as none, slight, moderate, or high,
and the amount of sickness as none, slight, moderate, or high. While
we would have preferred the Kennedy SSQ, this four-point scale was
chosen to make it easier for users to rate multiple scenes without re-
moving the headset and was sufficient for a preliminary study solely for
determining utility of depth as a feature. Users that did not complete the
full 60 seconds of a trial due to sickness were given the highest sickness
rating. The blanked display between trials lasted for a minimum of 60
seconds as a cool-down between each trial, extending indefinitely until
they were comfortable continuing. Users were free to end the study at
any time.

Each user was given a total of 11 trials to rate: 2 calibration trials
and 9 measurement trials. The calibration trials presented the random
dot kinematogram in the foreground motion condition, then the both-
moving condition, which we found in pilot testing to be most and least
likely to induce vection. This was done to provide a baseline for users
to calibrate their ratings. The users were not told these were baselines,
and the actual random dots trials followed immediately afterwards. The
other scenes were chosen to follow in a random order after the random
dots scene. For each scene, all 3 motion conditions were presented
together, but in a random order, to minimize drift in subjective user
ratings.



3.4 Results
The vection and sickness ratings from each scene and the average rating
for the motion type across scenes are presented in Fig. 4. We combine
the average across all scenes since the results are largely similar. A
qualitative analysis shows that the foreground motion condition elicited
almost no sickness or vection, whereas the other two motion conditions
are largely similar in the trend of increased vection causing increased
sickness. The background motion condition is lower in both respects,
likely due to the fact that the condition with both moving has twice the
total optical flow. If the reference frame hypothesis were correct, we
would expect to see high vection with sickness being minimal; however,
we see several people that experienced the highest level of sickness with
only background motion. Furthermore, the average ratings show that
the ratio of the sickness to the vection rating in both conditions is very
similar. To confirm this quantitatively, we assign the ratings an integer
from 1 to 4 (1=None, 4=High), and take the ratio of sickness over
vection for each trial. We combine motion conditions across scenes due
to their similarity. This gives 1.0 for the foreground motion condition,
0.70 for background, and 0.78 for both-moving. It is fairly apparent
from this ratio and the clustering in the scatterplot that the foreground
motion condition is different, so we only compare the background
motion and both-moving conditions for more statistical power. Despite
this, the background motion and both-moving conditions fail to be
significantly different (p > 0.1).

Therefore, we conclude that the background motion condition fails
to appear different from the both-moving condition. The qualitative
plots show a similar dispersal of the data in either condition, and the
quantitative analysis of sickness to vection ratio are not significantly
different. This indicates that depth ordering is in fact an important
consideration for sickness, following the general trend of correlation
between vection and sickness, and not showing any sickness reduction
provided by a nearby reference frame. Based on this result, we then
chose to include depth as a feature in the predictor.

4 DATASET CONSTRUCTION

Since we lack a well controlled dataset for videos and their sickness
ratings, the first step is to construct such a dataset. We extracted 60
second clips from 16 videos from YouTube’s selection of 360� stereo-
scopic videos; based on our previous experiment, we also included the
3 motion conditions from the random dot kinematogram to guarantee
there are at least some videos capable of teasing out the depth ordering
effect. This brings the total to 19 videos in our dataset. All of these
videos are rendered in the omnidirectional stereo (ODS) format. We
make this dataset available for future work. For our own experiments,
we constrain user head motion, meaning only the forward-facing central
viewport of each ODS video in our dataset was used.

4.1 Data Collection
Once the videos were selected, we gathered ratings from users. We
obtained data from 96 users (76 male, 20 female, ages 19–62, mean
age 28.4). All users gave informed consent according to the procedure
approved by the host institution’s institutional review board. Data was
collected at various locations and events on the host campus using a
mobile testing station.

For the data collection process, we used an HTC Vive head-mounted-
display, which provides a resolution of 1080⇥1200 per eye, with a
90 Hz refresh rate and a nominal 110� vertical FOV. In pilot testing,
when using Google Cardboard viewers to create a lower FOV dataset,
we were unable to obtain appreciable measurements for sickness. As
such, we chose to constrain ourselves to the HTC Vive and a single,
higher FOV that elicited sickness more often. The users’ head motion
was constrained using a headrest to ensure that all users saw the same
scene and users were asked to not look around.

Each user watched only one video during the test to minimize effects
of sickness accumulation. During the trial, a user would watch the
video clip for 60 seconds and then subsequently fill out the Kennedy
SSQ and the MSSQ-Short. A small number of users (13) were repeated
once to correct large imbalances in the number of responses per videos
due to random video selection; repeated trials took place several days

after the initial trial, and used a different video from what the user
originally saw. This brings the total number of trials across all videos
to 109.

Finally, during inspection of the survey responses for some users,
we noticed that some selected “Severe” in the Kennedy SSQ items
corresponding to blurry vision. When asked, they commented that
the video appeared blurry from the very start. When reviewing the
videos these users watched, it turned out to be a case of a low resolution
video as opposed to a likely physiological effect. These ratings, while
infrequent, greatly skewed the data, and as such, we excluded the
SSQ questions for “blurred vision” and “difficulty focusing” from any
ratings (effectively always considering them as “None”).

4.2 Rating Calculation
The basis of rating calculation for each video is as follows. First, we
obtain a sickness rating from each user for the video they watched.
Some average all these user ratings for a given video should correspond
to the intrinsic nauseogenicity of the video. However, individual users
are different in their susceptibility to sickness, and therefore we also
obtain a score that represents their susceptibility. We use this score to
perform a weighted average of the user ratings for each video to guess
that intrinsic nauseogenicity. The next several paragraphs detail this
weighted averaging process.

For each trial, we calculated a single sickness rating. We start by
calculating the Kennedy SSQ total score, K, as 3.74 times the sum
of the nausea, oculomotor, and disorientation subscores, according to
the formula given by Kennedy et al. [22]. Next, we find the motion
sickness susceptibility, MS, and also the percentile P (according to the
fit to percentile given by Golding et al. [17]),

P = 5.12MS�0.0552MS2

�6.78⇥10�4 MS3 +1.07⇥10�5 MS4. (1)

For each video, we need to calculate a single rating, R. To do this,
we need to perform a weighted average to the scores, K. We chose to
do this weighting based on the MSSQ responses of each user. There are
two basic ways to incorporate the susceptibility. The first is to normalize
the scores so that each user is comparable by down-weighting more
susceptible users relative to less susceptible users. However, there
are two issues with this approach. First, many less susceptible users
reported little to no symptoms, so this has the effect of making most
videos seem to have low sickness ratings. Second, we are interested
not in comparing users so much as we are teasing out the difference
between the videos. Therefore, we use the other approach, which is
to weight more susceptible users higher, increasing the sensitivity of
our measurement for each video. This gives us as the final formula for
sickness rating of video i,

Ri =
Âu2Ui

⇣
wPu
100 +1

⌘
Ki,u

Âu2Ui

⇣
wPu
100 +1

⌘ , (2)

where Ui is the set of users that watched video i, and w is free parameter
that determines the relative weight between the highest and lowest
percentiles. Adding 1 avoids numerical instability that may arise from
values of Pu near 0. We find our data to be relatively insensitive to the
choice of w, and choose w = 2 as a value that seems to work well.

Increasing the sensitivity in this way necessarily makes our calcula-
tion far more vulnerable to outliers; however we cannot remove outliers
based on the increased-sensitivity scores, because particularly suscepti-
ble users may be detected as outliers, which would defeat the purpose
of increasing sensitivity. Therefore, when checking for outliers, since
we now want to make the users comparable to each other, we normalize
by down-weighting the more susceptible users in accordance to their
percentile this time. The normalized scores for each trial are then

Ni,u =
Ki,u

Pu +1
, (3)
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Fig. 5. An illustration of feature calculation for a single frame. (a) For
the first two sets of features, we’ll consider only a single component of
the motion at a time, in this case, horizontal speed. This gives us a 2D
space which the pixels occupy, which is then divided into nine regions.
(b) The first set of features are the percent of pixels within each division
of (a), giving an approximation of the fraction of the visual field which
that disparity–speed range represents. (c) The second set of features
only groups the points (a) by disparity and uses the mean velocity in that
disparity range. (d) The last set of features operates directly on the 3D
representation of the pixels. They use PCA to extract the normal n, mean
m, and explained variances s2

1 and s2
2 to capture relative interactions

and spread of the data.

for video i with user u. We add 1 to avoid division errors. We found
that our dataset was relatively insensitive to the exact form of this
weighting as well, and as such, went with the simplest one. When we
check for outliers, we consider trials across all the videos together to
increase robustness of outlier detection (i.e. we remove outliers from
the set of all 109 trials, as opposed to from each video’s set of 5 or 6
trials), and use the 1.5 interquartile range definition for outliers. This
results in us removing 8 scores as outliers. The outliers were all from
different videos and these videos’ final scores were also well spread
over the range of sicknesses (Fig. 2). Since not all the outliers were
from the same one or two videos, this suggests that the outliers really
were due to individuals giving abnormally high sickness ratings as
opposed to accidentally filtering out the highest sickness videos. It also
suggests that testing for outliers across all videos instead of each video
individually is a valid approach.

5 PREDICTING SICKNESS

The intuition gained from the literature and our own experiments point
to the importance of the relative depth of objects, and the amount of
movement in the virtual scene (i.e. things that affect vection strongly).
Other factors, such as postural stability, attention, and optokinetic
nystagmus (OKN), are not available directly from the video content
itself, and require external measurements of the user. As such, we
choose to focus our feature selection efforts primarily towards disparity,
velocity, and their interaction.

In order to compute these features, we use optical flow algorithms.

Optical flow from one frame to the next on a given viewport (left eye)
can provide us with information about velocity in the scene at every
pixel location, allowing us to calculate features based on eccentricity,
speed, direction, and number of moving pixels in the video; however,
since there are indications that eccentricity does not affect vection [26],
we choose not to consider it. This also at least slightly reduces the
inevitable problem of overfitting to our relatively small dataset. The op-
tical flow algorithm was also used to compute disparity by considering
the flow between the left and right viewports, due to it seeming more
robust to distortion in some videos than traditional disparity matching.
We also discard any vertical component of the optical flow as noise for
the disparity calculation, and the horizontal component gives an offset
in pixels.

Finally, before continuing, we set aside four of the 19 videos as a
test set, chosen at random from within each quartile of sickness ratings,
and use the other 15 videos for training.

5.1 Feature Selection
When considering features, we must balance the need for sufficient
features to describe the data against the need to prevent overfitting.
However, with any more than three or four features, it is almost impos-
sible to prevent overfitting on our dataset. Therefore, we first consider a
large feature space and later use forward selection to reduce the number
of features to an important handful. Then, we try to see if those fea-
tures match intuitions or seem more likely to have arisen from random
overfitting.

All of the features were calculated on two size scales. First, on the
scale of the whole video frame, and second on each quadrant of the
video frame, giving five regions for each feature. This allows us to
differentiate between large, slow motions and smaller, fast ones. It
also accounts for types of motion such as roll that may cancel when
averaged over the entire frame, but not within each quadrant. Next,
to account for temporal changes, we apply a moving average for the
timeseries data of each feature in each region, and take the maximum
of the filtered timeseries data over the entire video,

fW = max
t2[W/2,60�W/2]

1
W

Z t+W/2

t�W/2

�� f (t)
��dt, (4)

where W is the length of the moving average, and f (t) is the feature
value (e.g. velocity or disparity) at some time t in the given region. The
moving average is computed with lengths of W = 7.5, 15, 30, and 60
seconds to account for different time scales of motion. The absolute
value of f (t) accounts for motions with the same trajectory but opposite
direction.

When selecting the actual features to compute for each spatial and
temporal scale, we fall back on the intuitions from the literature and
our experiments as mentioned above. Specifically, since the percept of
vection is dominated by the motion of the background, we expect the
velocities of objects at the furthest relative disparity to have the most
effect on sickness via vection. We design several sets of features in an
attempt to capture this intuition.

For the first set of features, we define three disparity bins with thresh-
olds at 1.5 px and 4.0 px (roughly 0.15� and 0.4�), and three velocity
bins with the thresholds at 1 px/s and 10 px/s (0.1�/s and 1�/s), forming
a 3⇥3 grid for each measure of motion considered. These thresholds
were chosen based on histograms of the entire dataset. The four mea-
sures of motion we use are the sum of velocity and the sum of the
absolute value of velocity in each of the vertical and horizontal direc-
tions. We consider the horizontal and vertical components separately to
preserve the vector nature of the motion with our scalar features. Also,
considering both the sum and sum of absolute values differentiates
between large camera motions (in which case the two will be similar)
and movement of several objects over the scene (in which case they
tend to differ due to cancellations in the sum but not in sum of absolute
value). This gives four grids of binned values. Then, we count the
number of pixels that fall into each of the nine bins and calculate from
that the approximate percent area represented by each bin in the 2D
grid. This results in 36 features per region.



Table 1. Final Chosen Features

Base feature Spatial region Time scale (W )

Mean disparity Quadrant II 7.5 s
Mean vertical velocity Quadrant IV 60 s

Medium speed, near disparity bin Quadrant IV 15 s
Medium speed, near disparity bin Quadrant IV 30 s

PCA n1
1 Quadrant IV 30 s

The second set of features uses only the three disparity bins, with the
same thresholds. We still consider the horizontal and vertical velocities,
but this time the velocity measures are not binned. Instead we take the
average value and average of the absolute value within the given region
and disparity bin. This results in another 12 features per region.

The last set of features attempts to be more data-driven in its ap-
proach. Illustrated in Fig. 5, we approximate a plane that describes
the data using PCA. We consider each pixel as a point in R3, with the
coordinates being disparity, horizontal velocity, and vertical velocity.
We perform a PCA analysis with these points to get the two principal
directions of highest explained variance. Since these define a plane, we
can use the unit normal to the plane, n, to represent both; we constrain
the first component of n to be positive for consistent results. We also
include the actual explained variance in those two principal directions,
s2

1 and s2
2 , as another pair of features to describe the spread of the

points. Finally, since PCA discards the mean, m, we add another three
features for the mean of the points in each dimension, resulting in eight
features per region.

5.2 Model Selection
While modern machine learning approaches often use neural network
architectures to automatically select optimally relevant features in the
data, they also often fundamentally require hundreds or thousands of
data points to generalize well. Since our entire data set is 19 videos, we
do not believe this to be the best choice of model. As such we turn to
classical methods, which are less data-dependent.

Our “ground truth” measurements are obtained from real-world
measurements of users. As such, we expect them to vary from some
intrinsic ground truth value for each video due to noise in the mea-
surement process. Furthermore, our features are likely have strong
interdependencies due not only to the multiple temporal and spatial
scales, but also to the interaction between velocity and disparity. There-
fore we use bagged decision trees as our model of choice. Decision
trees predict the mean of all training samples falling into distinct, non-
overlapping regions, which let them capture nonlinear dependencies in
the data [8]. Growing a binary decision tree for regression involves
recursively branching on a random feature’s value until a specified
maximum depth. The resulting split at every branch minimizes the
variance of the target feature as a function of the branch decision value.
The maximum depth hyperparameter is adjusted to control overfitting.
Combining this with bootstrap aggregating (bagging) is a proven way to
reduce the variance of this method and achieves a predictor more robust
to noise in the dataset [9]. Bagging entails averaging the predictions of
many decision trees, each grown from a “new” dataset sampled with
replacement from the original training set.

Next, since we have many more features than samples, we need to
address the issue of overfitting. In order to limit the number of features
– and therefore reduce overfitting – we use a beam search variant of
forward selection to identify which features to use as our regressors.
Forward selection is used to select a few maximally useful features
from a larger feature set. This is done using a greedy algorithm that
selects the best feature in isolation, the next best feature in conjunction
with the first, etc. However, it tends to miss interacting features that are
only useful for prediction when combined with others. On the other

1This is the disparity component of the normal to the plane fit using PCA.
The closer this component is to 1, the less the disparity varies relative to the
spread of velocities.

Table 2. Training Set Cross-Validation Predictions

Video Ground Truth Predicted ErrorSickness Sickness

sharks 4.6 16.4 �11.8
glowingdance 7.8 16.4 �8.6
dotsinner 12.8 15.2 �2.4
flyingcar 13.6 15.7 �2.1
oceancoaster 13.9 18.3 �4.4
woodencoaster 15.5 18.6 �3.2
spacevisit 21.1 20.2 0.9
roadcar 21.6 16.3 5.4
gardens 22.9 18.7 4.2
minecraft 23.7 24.6 �0.9
sculptures 24.2 22.9 1.2
snowplanet 27.2 26.2 1.0
ship 31.9 32.3 �0.4
dotsall 33.9 31.5 2.4
skyhouse 41.1 30.2 11.0

Table 3. Test Set Predictions

Video Ground Truth Predicted ErrorSickness Sickness

helicoptercrash 4.3 17.0 �12.7
dunerovers 20.8 19.9 0.8

cartooncoaster 25.4 22.1 3.3
dotsouter 37.8 16.1 21.7

hand, exhaustively assessing every subset of features is exponential and
intractable. Beam search is a heuristic search algorithm approximating
the advantage of an exhaustive search, without the exponential runtime.
At every step of the forward selection, instead of keeping only the
single best feature, we keep multiple; we chose a beam width of three
features per step.

Finally, to make better use of the small number of samples we have,
during training we use five-fold cross-validation (CV) to choose the
best model hyperparameters and perform the forward selection. This
leaves us with 50 bagged trees with a maximum depth of three as the
best choice of hyperparameters. The best features, as selecting by this
method, are listed in Table 1. These are features that roughly account
for average disparity, average vertical speed, and proportion of near-
disparity motion. They also cover a range of time scales. However,
when considering the spatial locations of the features, we see that most
of them are in quadrant IV – this suggests that overfitting may still be
an issue.

5.3 Results
To evaluate the performance of our model, we use as a baseline a naı̈ve
model that always predicts the mean sickness rating of the training set.
The baseline achieves RMS errors of 9.7, 10.4, and 12.0 on the train set,
train set with CV, and test set, respectively. In comparison, our model
achieves RMS errors of 2.6, 5.3, and 12.6, respectively. The largest
errors in CV occur at both the low and high extremes of the scoring
range, with the predictions not being extreme enough (Table 2). At first
glance, the RMS error for our model seems to fall short on the test set,
predicting a relatively low score for a high-sickness video. However,
when inspecting the individual scores for the videos in the test set (Ta-
ble 3), we see some nuances. The error of the predictions is less than
the validation RMS for two of the videos, but fails by a much wider
margin on the other two. For three of the videos, the test errors are
similar in nature to that of the CV errors. The one on which it diverges
the most from the correct rating is the background-motion random dot
kinematogram (dotsouter). This scene and the foreground-motion
dots scene (dotsinner in the training set) are extremely similar across
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Fig. 6. The predicted sickness ratings for a selection of videos in our dataset (each point of sickness is 4� on the meter). The first 11 videos are from
the training set (Table 2 in order, excluding dotsall, dotsinner, glowingdance, and spacevisit) and the last four videos (outlined in purple) are
the test set (their order, left to right, corresponds to their ordering in Table 3). In general, the predicted ratings cluster near the mid-to-high range of
the true sickness ratings.

most metrics, except when explicitly comparing the interaction between
disparity and velocity. Since the random choice of the test and training
set resulted in only one of them being in the training set, and most
videos are not quite as subtle in their differences, the machine learning
algorithm failed to find a differentiating feature.

6 DISCUSSION

The results lead us to believe that the problem of predicting sickness
ratings for videos using machine learning is tractable. Specifically,
when we review the CV error, we see that the values are relatively close
to their true values; if we consider that our true values span a range of
about 40, and wish to split this into a user-facing sickness rating with
four levels (e.g. none, slight, moderate, high), that gives a width of
10 per level – with the RMS of 5.3 that we achieve in CV, we should
be off by at most one level on average. This low CV error indicates
that the representational capacity of our features is large enough to
address this challenge. Furthermore, the representational power of the
features can only improve as more accurate techniques are developed
for the algorithms we employ in their calculation (optical flow for
example, which tends to yield noisy results at times). This, in addition
to the reasons stated in the previous section, also in part explains the
difficulty in correctly predicting the ratings for the background-motion
kinematogram, which not only has a velocity map that is noisy, but also
a disparity map that is similar to the foreground-motion kinematogram.
For example, the optical flow could be used to directly calculate the
user’s perceived direction and speed [2] as features instead of relying
on the algorithm to learn it from scratch.

On the other hand, in the test set we see issues with accurately
predicting the ratings on videos. We also see that four out of five of
our features after forward selection focus on just quadrant IV, and our
train and CV errors differ by a factor of two. These both suggest that
we are in the high variance regime, that is, that we are overfitting on
noise in the data. In addition, the CV error, often a good estimate of
the test error, instead differs by another factor of two from the test error.

This suggests that the videos in the test and train sets are not similar
enough to each other – this makes sense, we explicitly aimed to cover a
wide variety of videos when we collected our examples. However, this
variation turns out to be a double-edged sword, effectively forcing the
machine-learning model to extrapolate a train set regressor onto a test
set outside of the covered range.

Since our analysis points to the problem of assigning sickness ratings
to video content being tractable, we must consider how such a rating
could actually be used to help users select content. The first step
involves the content source (for example, the online store or the content
creators themselves), which would run the predictor on videos of the
scenes or simulated gameplay in the virtual experience. Once this is
done, the rating generated here should then be easily accessible or
prominently displayed to any user wishing to download it. With a
universal sickness rating, users could easily judge for themselves if
they can handle the game or video they wish to download. Analogous
to how some people avoid rollercoasters but others enjoy them, some
users may wish to avoid anything with a rating of over, for example,
25, while others actively seek them out. A particularly susceptible
individual may even wish to avoid anything over a much lower rating,
such as 5. In this way, despite being based only on metrics derived
from the videos, the sickness rating provided by our approach can be
informative to a wide range of end users.

One aspect of our method that may be straightforward to generalize
to a fully interactive environment is our choice to constrain head motion.
Since the sensory conflict model states that it is the conflict in motion
and not the presence of motion itself that causes sickness, if users
were allowed to freely move their heads with the virtual scene updated
accordingly and with low latency, there should be a minimal increase
in sickness caused by the head movement itself. However, there is
one caveat in that head rotation will change the prevailing direction of
motion within the scene, and therefore greatly affect the optical flow.
Since our sickness ratings were collected with users always facing
forward, scenes that did not exhibit changes in the direction of motion



may no longer have accurate ground truth ratings after allowing for
head rotation. Therefore, we did not implement this in our current
setup, but if sickness ratings are collected for a set of salient viewpoints,
these ratings and viewpoints could be combined and run through the
same overall model.

6.1 Future Work

Many of the issues mentioned above have a common solution, which is
the acquisition of a larger dataset, on the order of several hundred or
more videos. While this is beyond the scope of our work, a predictor
trained on a larger dataset generalizes to new data more easily. A
predictor that generalizes well has further benefits, such as being able
to investigate which features and interactions are actually important for
prediction of sickness, beyond what is currently known in the literature.
For example, while it certainly may be possible with our dataset, a
larger dataset aids in testing new, more powerful features to confirm
hypotheses about visual cues relevant to sickness.

A further advantage of using machine learning as a tool for pre-
diction is that it becomes easy to extend in the future. With larger
datasets come the possibility of using neural networks, for example. It
is also easy for future work, given a standardized dataset of videos, to
augment the questionnaire-based metrics with physiological indictors
of sickness [10] as ground-truth sickness ratings, perhaps allowing
for more real-time evaluations of nauseogenicity of small section of
videos. Another important direction in which the current model can
be extended is to take into account user behavior within the scenes.
This could take the form of a saliency predictor [36] that informs the
viewpoints and head movements which are in turn used to generate
videos fed to the our sickness predictor. Another possible approach is
to process the entire 360� video instead of smaller viewports; using
a neural network, this would likely also learn something similar to
saliency at an intermediate step, but potentially tailored to parts of the
scene that are more likely to cause sickness. Finally, saliency and other
models of user behavior may be key in extending our approach another
step further to fully interactive virtual reality.

An interesting application for this is individualized ratings. A VR
enthusiast could watch our set of videos, which could be done over the
course of a few hours (allowing for breaks between videos), and rate
each of them using the Kennedy SSQ. These scores would become their
ground-truth ratings, without the need for any complicated weighting
from the MSSQ, and be fed in directly to the machine learning model.
Our current model can be trained quite quickly, which then gives the
user a personalized classifier for future VR content. As the models and
datasets become larger, this personalized use will become less viable,
but the predictor itself will become more robust, reducing the need for
individualized ratings.

7 CONCLUSION

Motion sickness in VR is a widespread problem that promises, without
intervention, to only get worse as head-mounted display capabilities
such as field of view are improved, despite simultaneous improvements
to mitigating factors such as latency. Hardware solutions have potential
safety issues, thus we propose a principled software-based approach
for building a prediction model for video nauseogenicity. Coupled with
a large dataset and other insights from future work using our approach,
these models may in turn be used to understand visually induced motion
sickness on a deeper level.
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