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Fig. 1. Non-line-of-sight (NLOS) reconstructions of a hidden, room-sized scene. (a-b)One approach to NLOS imaging is to capture time-resolved measurements
sampled across a visible surface, and reconstruct the 3D shape and reflectance of the hidden scene. A disco ball produces the bright dots seen in themeasurements
of indirect light transport (a), and other diffuse and glossy objects produce the streaks. (c) Among the various methods for reconstructing shape and reflectance
from these measurements, filtered backprojection (FBP) is conceptually one of the simpler methods; it involves a delay-and-sum (backprojection) operation of
the time-resolved measurements, followed by a heuristic high-pass filter on the result. (d) The light-cone transform (LCT) is a fast reconstruction algorithm
that produces more accurate reconstructions in less time, but requires making restrictive assumptions on light transport (e.g., assumes the scene only contains
diffuse objects). (e) In this paper, we introduce f−k migration, an algorithm that is both fast and versatile, for NLOS imaging. The wave-based nature of this
inverse method is unique in being robust to objects with diverse and complex reflectance properties, such as the glossy dragon, the diffuse statue, and the
reflective disco ball shown in this scene. All volumes are rendered as maximum intensity projections.

Imaging objects outside a camera’s direct line of sight has important appli-

cations in robotic vision, remote sensing, and many other domains. Time-

of-flight-based non-line-of-sight (NLOS) imaging systems have recently

demonstrated impressive results, but several challenges remain. Image for-

mation and inversion models have been slow or limited by the types of

hidden surfaces that can be imaged. Moreover, non-planar sampling surfaces

and non-confocal scanning methods have not been supported by efficient

NLOS algorithms. With this work, we introduce a wave-based image forma-

tion model for the problem of NLOS imaging. Inspired by inverse methods

used in seismology, we adapt a frequency-domain method, f−k migration,

for solving the inverse NLOS problem. Unlike existing NLOS algorithms,
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f−k migration is both fast and memory efficient, it is robust to specular and

other complex reflectance properties, and we show how it can be used with

non-confocally scanned measurements as well as for non-planar sampling

surfaces. f−k migration is more robust to measurement noise than alterna-

tive methods, generally produces better quality reconstructions, and is easy

to implement. We experimentally validate our algorithms with a new NLOS

imaging system that records room-sized scenes outdoors under indirect

sunlight, and scans persons wearing retroreflective clothing at interactive

rates.
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1 INTRODUCTION
Conventional 3D imaging systems based on the time-of-flight prin-

ciple measure the time it takes a light pulse to travel along a direct

path from a source, to a visible object, and back to a sensor. Non-line-

of-sight (NLOS) imaging, on the other hand, uses multi-bounce light
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paths to indirectly measure the 3D shape and visual appearance of

hidden objects [Kirmani et al. 2009; Velten et al. 2012] by turning

visible surfaces into diffuse reflectors (cf. Fig. 1). The NLOS problem
is of fundamental importance to many fields (e.g., medical imaging,

robotic vision, remote sensing), as the ability to “see” objects hidden

from direct line-of-sight has far reaching implications. For instance,

NLOS imaging techniques could provide autonomous vehicles a

way to see hidden obstacles and navigate around them safely.

Much progress has been made in the emerging field of NLOS

imaging (as discussed in Sec. 2), yet significant challenges lie ahead

to make this ability practical. First, NLOS light transport models are

usually very restrictive, with assumptions that the visible surface is

a plane or that hidden objects are Lambertian (diffuse) or retroreflec-

tive. Second, the large-scale inverse problems associated with NLOS

imaging have traditionally been computationally slow and memory

intensive, severely limiting the size of hidden volumes that can be

processed. Third, NLOS imaging tends to be a highly light-deficient

process. For this reason, the sizes of experimentally captured hidden

scenes have been small and retroreflective reflectance properties

have been exploited to keep acquisition times reasonable.

In this work, we address these challenges with a new wave-based

method, called frequency-wavenumber (or f−k) migration, that

solves the NLOS problem in closed form. The runtime and memory

requirements of our method are orders of magnitude lower than tra-

ditional NLOS reconstruction methods such as filtered backprojec-

tion (FBP) [Velten et al. 2012], and match the computational perfor-

mance of the recently proposed light-cone transform (LCT) [O’Toole

et al. 2018a], which has been shown to operate at real-time rates us-

ing an efficient GPU implementation [O’Toole et al. 2018b]. Yet, the

LCT is fundamentally limited in the types of light transport effects

it can model adequately. This is primarily due to its geometric op-

tics nature, which only accounts for Lambertian and retroreflective

objects, and it has also been restricted to planar scanning surfaces

and confocal measurements. f−k migration alleviates these short-

comings while improving robustness to complex scene reflectances

and providing superior NLOS reconstruction quality compared to

other inverse methods in most cases.

Originally proposed by Stolt [1978] for the application of seismic

imaging and later adopted in other domains including synthetic

aperture radar (SAR) [Cafforio et al. 1991], f−k migration is the

fastest known wave migration method [Margrave and Lamoureux

2018]. We explore the connection between these techniques and the

NLOS imaging problem and, more importantly, show how NLOS

reconstruction can benefit from algorithmic advances in these fields.

The key contributions of this work include the following:

• We introduce f−k migration to the problem of NLOS imaging

and explore the connection between this problem and related

challenges in seismic imaging and other fields.

• We demonstrate that f−k migration achieves higher-quality

results than other NLOS algorithms, is robust to scenes with

complex reflectance properties, and handles non-planar sam-

pling surfaces, as well as confocal and non-confocal scanning

approaches.

• We design and build a high-power confocal NLOS system

capable of scanning room-sized NLOS scenes with complex

reflectance properties and interactive operation “in the wild”.

Table 1. Comparison of NLOS reconstruction algorithms given a N × N ×

N spatio-temporal measurement volume. The FBP method is flexible in
being able to handle arbitrary sampling surfaces and scanning schemes,
but it is slow and usually leads to low-quality reconstructions. The LCT
is fast and accurate, but the method has been constrained by confocal
sampling schemes, it has not been demonstrated for non-planar sampling
surfaces, and the achieved quality degrades for non-Lambertian objects.
The proposed f−k migration algorithm is fast, robust to non-Lambertian
reflectance properties, and produces high-quality reconstructions for non-
planar sampling surfaces.

FBP LCT f−k mig.

Runtime O
(
N 5

)
O

(
N 3loдN

)
O

(
N 3loдN

)
Memory O

(
N 3

)
O

(
N 3

)
O

(
N 3

)
Quality low medium-high high

Non-planar surfaces yes no yes

Non-confocal scanning yes no yes

Non-Lambertian objects no no yes

2 RELATED WORK
The foundation of our approach to NLOS imaging spans several

fields. We devote this section to reviewing works on optical NLOS

imaging, followed by a short overview of techniques used in related

fields, including seismic imaging and SAR.

2.1 Optical NLOS Imaging
NLOS imaging, also referred to as “imaging around corners,” is a

topic that has received significant attention since being introduced

by Kirmani et al. [2009]. The idea involves probing a visible wall

with an ultrafast laser and detector, and it was later demonstrated

in practice with a femtosecond laser and a streak camera [Velten

et al. 2012]. The so-called transient measurements [Gkioulekas et al.

2015; Lindell et al. 2018; O’Toole et al. 2017; Velten et al. 2013] used

in NLOS imaging capture the contribution and travel time of light

propagating from one point on a wall, to points in the hidden scene,

and back to another point on the wall. Although the ability to image

objects hidden from sight is an impressive feat, this initial work also

raised many important questions on ways to improve the acquisition

and reconstruction procedures.

Due to the expense of femtosecond lasers and streak cameras,

some researchers have since opted to use other sensing technolo-

gies, including photonic mixer devices (PMDs) used in time-of-flight

cameras [Heide et al. 2014] or even regular camera sensors [Klein

et al. 2016; Saunders et al. 2019]. However, many have embraced

the use of single-photon avalanche diodes (SPADs) for NLOS imag-

ing [Buttafava et al. 2015; O’Toole et al. 2018a; Xu et al. 2018],

which are sensors capable of detecting the arrival time of individual

photons with a temporal precision on the order of tens of picosec-

onds. These sensors are relatively versatile, enabling NLOS imaging

at long distances, under ambient lighting, or at fast rates [Chan

et al. 2017; O’Toole et al. 2018b]. Our solution also makes use of a

SPAD sensor paired with a picosecond laser. We refer readers to

Altmann et al. [2018] for a comprehensive review of SPADs and

their applications.

Computationally solving the NLOS reconstruction problem is a

major challenge. FBP involves a delay-and-sum operation on tran-

sient signals, followed by a Laplacian filter [Velten et al. 2012].

While the results of FBP are promising, the method has several
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limitations: the algorithm (1) only gives an approximation of shape

and reflectance since it relies on a heuristic filter, (2) makes several

restrictive assumptions on light transport (e.g., assumes objects re-

flect light diffusely, and ignores both occlusions and multi-bounce

light transport within the hidden volume) and (3) is very slow.

As a result, a variety of solutions have been proposed, includ-

ing those that reduce NLOS imaging to a simpler tracking prob-

lem [Gariepy et al. 2016], use a parametric planar model to represent

the hidden scene [Pediredla et al. 2017a], estimate shape from only

the first-returning photons [Tsai et al. 2017], provide a more accu-

rate model for light transport at the cost of higher computational

complexity [Heide et al. 2019; Iseringhausen and Hullin 2018], or

reconstruct a surface representation of a hidden object by analyzing

the geometry of specular paths or by solving an inverse rendering

problem [Tsai et al. 2019; Xin et al. 2019]. Others refined the existing

NLOS problem statement of Velten et al. [2012] with methods that

improve quality with iterative solvers [Gupta et al. 2012; La Manna

et al. 2018] or increase computational performance with a fast GPU

implementation of FBP [Arellano et al. 2017].

There are also a variety of passive approaches to NLOS imag-

ing [Baradad et al. 2018; Boger-Lombard and Katz 2018; Bouman

et al. 2017; Saunders et al. 2019; Thrampoulidis et al. 2018; Torralba

and Freeman 2012] or those that rely on laser speckle and the mem-

ory effect [Bertolotti et al. 2012; Katz et al. 2014; Smith et al. 2018].

However, these methods provide limited information about the hid-

den scene, make strong assumptions on light transport (e.g., the
presence of occluders), or are limited to microscopic settings.

Other work explores NLOS imaging for varying reflectance prop-

erties or surface orientations of the hidden object and visible wall.

For example, by illuminating and imaging different parts of the wall,

the reflectance properties of a hidden patch with a known spatial

location can be determined [Naik et al. 2011]. Alternatively, array

signal processing techniques can be related to NLOS imaging to

understand how different reflectances of the wall affect resolution

bounds [Kadambi et al. 2016]. Other work analyzes how surface ori-

entation affects NLOS feature visibility [Liu et al. 2019] and proposes

techniques to bound localization and photometric error [Pediredla

et al. 2017b].

With respect to all prior works on optical NLOS imaging, our

f−k migration method is most similar to the recent work based on

the LCT [O’Toole et al. 2018a] in terms of the low computational

complexity and memory requirements (see Table 1). However, the

LCT assumes diffuse or retroreflective reflectance and was only

shown to work for confocal measurements, i.e., transients captured
by illuminating and imaging the same point on the wall as shown

in Fig. 2. Our method also draws inspiration from wave-based mod-

els, an idea briefly discussed in the context of NLOS imaging by

Reza et al. [2018a] and explored in more detail in concurrent arXiv

works [Liu et al. 2018; Reza et al. 2018b]. However, these works on

NLOS imaging use a standard backprojection algorithm which is

several orders of magnitude slower than our proposed approach, as

detailed in Table 1.

2.2 Seismic, Acoustic, and other Wave-based Imaging
Seismic imaging involves detecting geological interfaces below the

earth’s surface [Margrave and Lamoureux 2018], with applications

in oil and gas exploration. An explosion or seismic vibrator generates

seismic waves that propagate through the earth, and geophones

measure the response at different points on the earth’s surface.

Governed by the wave equation, seismic migration is the process

of computing the complex subsurface geology that gives rise to the

waves detected at the surface, which is mathematically similar to

light transport in optical NLOS imaging.

Stolt [1978] introduced frequency-wavenumber migration, com-

monly referred to as f −k migration, to solve the seismic imag-

ing problem. This algorithm remains the fastest known migration

method since its invention, and provides an exact analytical solution

for the corresponding wave-based model. It assumes that seismic

waves travel at a constant velocity, which unfortunately is generally

not the case in seismology (though extensions to f−k migration

exist that handle variable wave velocities [Stolt 1978]). Since seismic

waves share the same nature as sound waves and even radio waves,

f−k migration has also found applications in synthetic aperture

sonar (SAS) [Callow 2003; Sheriff 1992], ultrasound imaging [Garcia

et al. 2013], and synthetic aperture radar [Cafforio et al. 1991].
1

The propagation of seismic waves also shares many similarities

to light transport at visible or near-visible wavelengths, where light

waves do generally travel at a constant velocity in free space and are

also governed by the wave equation. This connection is exemplified

by the proposed use of the LCT method for acoustic NLOS imag-

ing [Lindell et al. 2019], and the existence of an acoustic processing

technique analogous to LCT [Norton 1980]. While similarities do

exist between mechanical and optical waves, there are also dis-

tinct differences in the measurements that require careful treatment,

which we address by adapting f−k migration to solve the optical

NLOS problem.

Note that longer electromagnetic waves can also pass through

walls, rather than scatter off walls. A large body of works therefore

exploit this property to perform through-the-wall NLOS imaging

using wifi signals [Adib et al. 2015; Adib and Katabi 2013; Zhao et al.

2018] or terahertz radiation [Redo-Sanchez et al. 2016].

3 CONFOCAL NLOS IMAGING USING f−k MIGRATION
The wave equation describes the propagation of electromagnetic

radiation (i.e., light). In this section, we show how to express the

confocal NLOS image formation model with the wave equation,

interpret the NLOS reconstruction problem as a boundary value

problem, and introduce the f−k migration technique as a fast closed-

form analytical solution to the NLOS reconstruction problem.

3.1 The Wave Equation for NLOS Imaging
Solutions to the time-dependent wave equation accurately model

light propagation, including reflections, scattering, and other com-

plex light transport effects. We express the solution as a complex-

valued scalar wave field Ψ(x,y, z, t) representing the electromag-

netic radiation at every point in space x , y, z and time t .

1
Cafforio [1991] referred to f−k migration as ω−k migration, due to the relationship

between frequency f and angular frequencyω = 2π f used in the migration algorithm.

The term ω−k migration or range migration algorithm (RMA) is now commonly used

in the radar community for historical reasons.
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Fig. 2. Illustration of a confocal NLOS system. In this setup, a pulsed pi-
cosecond laser sends light to a spot on a visible wall, and a single-photon
avalanche diode (SPAD) captures time-varying measurements of the light
reflected back in response. Both the laser and SPAD illuminate and image
light at the same spot on the wall and operate in a confocal configuration.
By controlling the angle of the galvo mirrors, the system scans different
points on the wall and probes the indirect light reflecting off of the hidden
object.

In free space, the wave equation constrains the propagation of Ψ
in space and time according to(

∇2 −
1

v2

∂2

∂t2

)
Ψ = ∇2Ψ −

1

v2

∂2Ψ

∂t2
= 0, (1)

where the Laplacian operator ∇2 = ∇ · ∇ = ∂2

∂x 2
+ ∂2

∂y2
+ ∂2

∂z2
is

defined over the spatial dimensions and the speed of light in the

medium is usually defined as v ≈ 3 · 10
8
.

In NLOS imaging, measurements are recorded using an ultrafast

detector and a pulsed laser to probe the time-resolved light transport

on a visible surface. For simplicity, assume that this surface is planar

and located at z = 0 for the moment (see Fig. 2). Therefore, we

can directly access certain properties of Ψ(x,y, z = 0, t) with the

imaging system. Following O’Toole et al. [2018a], we interpret the
hidden scene as a 3D volume where each point (or voxel, in the

discrete case) emits a spherical wave at t = 0. Unfortunately, we

cannot directly record this scene, so we have to estimate it from

the measurements. This is a boundary value problem that requires

us to migrate the field from one boundary condition (i.e., z = 0) to

another (i.e., t = 0):

Ψ(x,y, z = 0, t) ⇒ Ψ(x,y, z, t = 0). (2)

Note that this interpretation is only correct if the time-resolved

measurements are recorded with a confocal imaging system, where

one illuminates 2D points on the visible surface while acquiring

time-resolved measurements at the same points (see Fig. 2). With

this acquisition setup, light propagates to the hidden scene only

along very specific paths: from an illuminated point on the visible

surface to some hidden point, and back to the same point on the

surface. Eqn. (1) models these constraints by setting v to half the

speed of light, i.e., v = c
2
. Coincidentally, this same propagation

model is referred to as the “exploding reflector model” in seismol-

ogy [Margrave and Lamoureux 2018].

With this image formation model, we make the following assump-

tions: (i) similar to most other NLOS approaches, partial occlusions

within hidden scene parts are ignored and (ii) light transport is only

modeled from the visible surface to the hidden scene and back (i.e.,
no multi-bounce transport within the hidden volume). However,

no assumptions are explicitly made with respect to the reflectance

properties of the hidden objects. Finally, the wave equation models

the inverse distance falloff
1

r when light propagates from the object

to the wall; however, this ignores the falloff due to light propagating

in the opposite direction. We therefore account for this in a pre-

processing step by multiplying the measured time-varying field by

t , where time t is proportional to distance travelled r .

3.2 f−k Migration for NLOS Reconstruction
Many numerical methods exist to compute solutions to the wave

equation given some initial conditions, including finite element and

finite difference methods. For homogeneous media, f−k migration

is the fastest known method and provides an exact solution. As its

name suggests, f−k migration relates the two boundary conditions

(cf. Eqn. (2)) in the frequency domain.

To understand this approach, let us express the time-dependent

field Ψ as a superposition of plane waves:

Ψ(x,y,z,t)=

∭
Φ(kx ,ky ,kz )e

2πi(kx x+kyy+kzz−f t )
dkxdkydkz . (3)

Here, k = 2π · (kx ,ky ,kz ) is the wave vector indicating the direction
of propagation of the individual plane waves, where |k| = 2π/λ for

optical wavelength λ. The complex-valued function Φ represents

the amplitude and phase of each plane wave at time t = 0. The

wave vector k and frequency f are related by the dispersion relation

f = v
√
k2

x + k
2

y + k
2

z . An important property of Eqn. (3) is that

functions Φ and Ψ are related by a Fourier transform when t = 0.

Please refer to the supplemental material for a detailed derivation

of this expression.

Alternatively, one can express Eqn. (3) as an integral over kx , ky ,
and f . This is done by using the dispersion relation and its Jacobian,��� df
dkz

��� = v |kz |√
k2

x+k2

y+k2

z

, to perform a change of variables

Ψ(x,y,z,t)=

∭
Φ̄(kx ,ky , f )e

2πi(kx x+kyy+kzz−f t )
dkxdkydf (4)

where

Φ(kx ,ky ,kz ) =
v |kz |√

k2

x + k
2

y + k
2

z

Φ̄

(
kx ,ky ,v

√
k2

x + k
2

y + k
2

z

)
. (5)

This expression for the change of variables represents a weighted

1D interpolation, known as Stolt interpolation (see Margrave and

Lamoureux [2018] for a useful overview and derivation in the con-

text of seismology). Once again, when z = 0, Eqn. (4) becomes a

three-dimensional Fourier transformation.

Equipped with Eqns. (3)-(5), f−k migration takes as input a func-

tion Ψ(x,y, z = 0, t) and follows three simple steps to migrate the

field back to Ψ(x,y, z, t = 0): a 3D Fourier transform of the mea-

surements, a weighted interpolation of the resulting volume, and

an inverse 3D Fourier transform. The measurement volume should

also be padded with zeros prior to performing the Fourier transform
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operation. Refer to Algorithm 1 for pseudo code describing this

algorithm. Similarly derived steps can be used to migrate the field

in the opposite direction, from t = 0 to z = 0.

Algorithm 1 f−k migration for NLOS imaging

1: procedure fkmig(τ (x,y, t))

2: // Pre-process data
3: Ψ(x,y, t) = t ·

√
τ (x,y, t)

4: Ψ(x,y, t) = pad_volume(Ψ(x,y, t))

5: // Fast Fourier transform (Eqn. (4))
6: Φ̄

(
kx ,ky , f

)
= F{x ,y,t } {Ψ(x,y, t)}

7: // Stolt interpolation (Eqn. (5))
8: Φ

(
kx ,ky ,kz

)
=

v |kz |√
k2

x+k2

y+k2

z

· resample
(
Φ̄(kx ,ky , f )

)
9: // Inverse Fast Fourier transform (Eqn. (3))
10: Ψ(x,y, z) = F −1

{x ,y,z }

{
Φ
(
kx ,ky ,kz

)}
11: // Post-process data
12: Ψ(x,y, z) = unpad_volume(Ψ(x,y, z))

13: return |Ψ(x,y, z)|2

14: end procedure

Assuming the measurement and reconstruction volumes have N
elements along each dimension, the method requires O(N 3

logN )

operations due to the 3D Fourier transform operations in Algo-

rithm 1, and O(N 3) memory to store the volumes. Because the

algorithm relies on Fourier transform operations and a 1D Stolt

interpolation procedure, the method is also highly parallelizable.

3.3 Wave Optics Considerations
f−k migration assumes that the amplitude and phase of the complex

field Ψ(x,y, z = 0, t) are known, and measurements are usually

captured at spatial scales comparable to the surface geometries that

cause scattering. The longer wavelengths of seismic, acoustic, and

radio waves facilitate direct measurement of the complex fields at

these scales. However, optical scattering interactions, which give

rise to surface reflectance properties, occur at far finer scales than

our measurements captured with visible wavelengths. Thus when

applied to optical NLOS imaging, f−k migration is robust, but not

completely invariant, to varying scene reflectance properties.

The highly-oscillatory field at optical wavelengths makes it chal-

lenging to measure the phase and amplitude of Ψ directly. Typical

NLOS systems measure a transient image τ (x,y, t) = |Ψ(x,y, z =
0, t)|2, capturing only the intensity of the field. While interferomet-

ric techniques [Gkioulekas et al. 2015] could potentially be used

to capture the phase information, this would require more compli-

cated optical setups. Iterative phase retrieval algorithms can also be

applied, but result in a much slower inverse method.

In practice, we observe that simply omitting the phase at the initial

boundary conditions, i.e., by setting Ψ(x,y, z = 0, t) =
√
τ (x,y, t),

produces high-quality reconstructions without any iterations. Simi-

larly, the output of the f−k migration method should also be squared

to obtain the final real-valued volume, |Ψ(x,y, z, t = 0)|2. A similar

procedure is used in synthetic aperture sonar; phase information is

(a) Geometry

(d) Sim. w/ wave model
Rec. w/ phase

(e) Sim. w/ wave model
Rec. w/ phase retrieval

(f) Sim. w/ wave model
Rec. w/o phase

(b) Sim. w/ ray tracer
Rec. w/ phase retrieval

(c) Sim. w/ ray tracer
Rec. w/o phase

0 cm

2 cm

Er
ro

r

30 cm

18 mm/4.1 mmmean/med. abs. error: 17 mm/4.1 mm

11 mm/4.0 mm 16 mm/4.1 mm 19 mm/4.4 mm

Fig. 3. Evaluation of the effect of phase on f−k migration reconstruction.
(a) Geometry of the Happy Buddha. (b-c)We use a ray tracer to simulate
measurements for a mirror-like Buddha with the ray tracing procedure de-
scribed in Sec. 5. Using f−k migration with phase retrieval produces a slightly
sharper appearance, but with similar quantitative performance as omitting
the phase retrieval step. (d)We also use the wave equation to synthesize
complex-valued measurements with phase and amplitude information and
apply f−k migration. (e-f) We remove phase information by computing
the absolute value of the measurements used in (b) and reconstruct the
measurements (e) with phase retrieval or (f) without phase retrieval. While
reconstruction quality improves by retrieving phase information, omitting
phase produces a similar result with far less computation.

discarded because maintaining phase coherence as measurements

are captured is difficult [De Heering 1984; Foo 2004].

In Fig. 3, we evaluate the effect of phase on reconstruction quality

by simulating confocal NLOS measurements of a Happy Buddha

and performing the reconstruction with f−k migration. The mea-

surements are simulated using a geometric ray tracing technique

(described in Sec. 5) or using the wave equation. The ray tracing

technique approximates captured NLOS intensity measurements at

the correct spatial scales, but lacks phase information. Using the

wave equation provides amplitude and phase information, though

scattering interactions are simulated at millimeter scales rather than

the sub-micron scales of optical wavelengths because of practical

computational constraints.
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To quantitatively evaluate the accuracy of reconstructed volumes,

we generate depth maps by searching for the voxels with maxi-

mum intensity along the z-dimension (i.e., in the direction of the

wall’s normal), and compare these depth maps to the ground truth

geometry. Maximum intensity projection is a common volume vi-

sualization technique [Pettersen et al. 2004], which we employ to

visualize and evaluate reconstructed geometry.

For Fig. 3(b-c), we use the ray tracing procedure to generate

intensity measurements for a specular Buddha, and compare recon-

structions using (b) a hybrid input-output iterative phase retrieval

algorithm [Fienup 1982] and (c) our heuristic approach of omitting

the phase. We run the phase retrieval algorithm for 50 iterations

with a step size of 0.01; additional algorithmic details are provided

in the supplementary material. While phase retrieval produces a

slightly sharper appearance, the methods are quantitatively similar

with both having a median absolute error of 4.1 mm.

For Fig. 3(d-f), we simulate both phase and amplitude of the wave

field using the wave equation. The volume is reconstructed with

f−k migration (d) using the phase information, or (e-f) using the

absolute value of the measurements (i.e., omitting the phase) with or

without the phase retrieval algorithm. While reconstruction quality

is worse when ignoring phase, the features of the Happy Buddha

remain clearly discernible. In general, omitting the phase results in

reconstruction quality similar to iterative phase retrieval while being

much less computationally expensive. All results in the following

are reconstructed using this method of omitting the phase, except

for an additional comparison on captured data which we provide in

the supplementary material.

4 PROTOTYPE SYSTEM
In order to experimentally validate the performance of f−k migra-

tion, we built a prototype system which captures confocal NLOS

measurements for a variety of scenes at room-sized scales (several

meters in each dimension).

4.1 Hardware
Our prototype confocal NLOS system consists of a laser, detector,

electronics, and various optics and optomechanical parts used for

focusing and scanning. A photo of the prototype is shown in Fig. 4.

The system enables faster and higher-resolution scanning with an

average laser power roughly 10,000× greater than previous confocal

NLOS systems [O’Toole et al. 2018a].

A high-power pulsed laser (NKT Photonics OneFive KATANA

05 HP) emits a collimated and linearly polarized beam consisting

of 35 ps pulses at a rate of 10 MHz. The average optical power of

the emitted laser beam exceeds 1 W at 532 nm. The polarized light

passes through a polarized beamsplitter cube (Thorlabs PBS251), and

is steered into the scene by a pair of galvanometer mirrors (Thorlabs

GVS012) controlled with a National Instruments data acquisition

device (NI-DAQ USB-6343). The returning light travels back along

the same optical path, is reflected by the polarizing beamsplitter,

and is focused by a lens (Canon EF 50 mm f/1.8) onto a detector (see

Fig. 4 for illustration of the optical path). Because the wall randomly

polarizes light upon reflection, the polarized beamsplitter blocks

50% of the returning light.

Fig. 4. Prototype confocal NLOS imaging system. A laser emits a short pulse
of light that is optically steered by galvo mirrors to scan a scene. Direct
and indirect light returns along the same optical path and is measured by a
fast-gated single-photon avalanche diode (SPAD).

The detector is a single-pixel fast-gated SPAD (Micro Photon

Devices PDM series SPAD) with a 50 µm × 50 µm active image area.

A time-correlated single photon counter or TCSPC (PicoQuant Pi-

coHarp 300) takes the signal of the SPAD and laser as input, and

outputs a stream of photon timestamps to a computer. In order to

avoid the overwhelmingly bright contribution of direct light which

returns from the wall, we use the SPAD’s gating capability; this

allows us to turn the SPAD on after the direct light arrives and off

after capturing the indirect light from the hidden scene (i.e., we use
an ultra-fast electronic shutter). The time at which the gate turns on

can be variably adjusted by passing the trigger signal from the laser

through a delayer unit (PicoQuant MPD Picosecond Delayer) and

on to the SPAD. We program the length of the gate in software to be

approximately 40 ns, which spans the time over which the indirect

light arrives. The temporal resolution of the system, including the

laser, SPAD, and TCSPC, is approximately 70 ps.

4.2 Calibration and Scanning Procedure
Calibrating the prototype hardware system requires focusing the

lens and aligning the illumination and detection spots. With the

laser turned off and ambient lights on, we raster scan 32× 32 images

of a checkerboard calibration target, and adjust the focus settings

to achieve a sharp image. With the laser turned on, we position

and orient the beamsplitter cube to align the laser and SPAD. At

the highest laser power settings, the direct light from the wall can

still overwhelm the SPAD despite its gating capabilities; we there-

fore intentionally misalign the system in order to illuminate and

image two slightly different spots on a wall, reducing the measured

intensity of direct light by a factor of approximately 100.
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When acquiring measurements, we perform an initial scan of the

wall to capture its 3D shape, and use this information to sample

measurements across an uniform grid. We also use this information

to rapidly adjust the time at which the SPAD gate turns on during

scanning, so that measurements are captured just after the direct

light from the wall arrives. The vertical scan rate of the system

is up to 128 lines per second; this corresponds to scan rates of

4 Hz for 32 × 32 samples and 2 Hz for 64 × 64 samples. For long

exposures at 512 × 512 resolution, we scan at a rate of
1

15
Hz, repeat

the scan and sum the measurements over the desired exposure

time. Increasing the number of spatial samples improves the lateral

resolution of the reconstructed volume up to a bound determined

by the system temporal resolution (see supplemental materials for

additional information).

4.3 Software
A MATLAB function captures and processes a stream of raw data.

This data stream consists of 32-bit data packets for every detected

event: 12-bits represent the time-of-flight value of a detected photon

measured in increments of 16 ps, 16-bits correspond to a coarse

time value measured in microseconds, and 4-bits represent external

marker signals. The NI-DAQ passes a VSYNC signal to the TCSPC,

injecting marker signals into the data stream that indicate the start

of every new frame. TheMATLAB function converts the data stream

into a measurement volume as follows: for every event in the data

stream, the function determines the (x,y) scanning position using

the coarse time elapsed since the start of the frame, sets the value

t to the corresponding time-of-flight value relative to the direct

component that appears at t = 0, and increments the value of voxel

(x,y, t) within the measurement volume.

The data are processed on a computer with 256 GB of memory

and two Intel Xeon E5-2690 v4 CPUs running at 2.60 GHz. With this

hardware, our unoptimized MATLAB implementations of f−k migra-

tion and the LCT take approximately 80 s and 25 s, respectively for

a volume of 512
3
samples. We attribute the difference in reconstruc-

tion time to the inefficient implementation of the Stolt interpolation

step, which relies on MATLAB’s interpn function. In comparison,

FBP requires over 10 hours of compute time for the same volume.

A real-time (> 60 reconstructions per second) GPU-based imple-

mentation of the LCT was recently demonstrated [O’Toole et al.

2018b], and similar reconstruction speeds could be attained with

f−k migration. All captured datasets and reconstruction software

are publicly available
2
.

5 RESULTS
Quantitative Evaluation. Wequantitatively evaluate f−k migration

and LCT through simulations in the following. The scene contains

either a specular or diffuse Stanford bunny contained within a 1 m

× 1 m × 1 m hidden volume. Simulated data is processed at a spatial

resolution of 256 × 256 and a temporal resolution of 1024. Each

temporal bin spans 16 ps.

Generating simulated confocal measurements of a specular

scene is a challenging rendering problem (discussed in Jakob and

2
Code and datasets available at https://github.com/computational-imaging/nlos-fk/

and http://www.computationalimaging.org/publications/nlos-fk/

specular hidden object wall

surface normal confocal
sample location

Fig. 5. Illustration of confocal ray tracing procedure for a specular hidden
object. Confocal NLOS measurements of a specular hidden object capture
light paths which travel from the wall to the hidden object and return to the
same position on the wall. We simulate these measurements by randomly
sampling the surface of the hidden object, generating a ray whose direction
corresponds to the sampled surface normal, intersecting the ray with the
wall, and calculating its radiometric contribution and path length.

Marschner [2012]) which requires finding paths that begin at the

wall, reflect off of a specular object, and return to the same point
on the wall. With standard ray tracers, these paths are only found

when the sampled random outgoing ray direction from the wall

exactly matches the object surface normal at the point of intersec-

tion. Since the corresponding subset of paths has measure zero (i.e.,
they are sampled with zero probability), recent transient render-

ers [Jarabo et al. 2014, 2017, 2015; Marco et al. 2019] do not sample

these troublesome light paths efficiently. We therefore simulate the

measurements using a custom ray tracing procedure.

Our custom procedure is illustrated in Fig. 5 and consists of (1)

choosing a random 3D point on the hidden object, (2) generating a

ray with a direction that matches the corresponding surface normal,

(3) intersecting this ray with the wall (if visible), and (4) calculating

the radiometric contribution and path length of the corresponding

confocal light path. This procedure is limited to capturing 3-bounce

specular paths, which contribute the majority of the signal; comput-

ing higher-order specular paths is highly non-trivial. We also use

this procedure to generate the simulated measurements in Fig. 3 in

addition to those in Fig. 6.

Reconstruction of a specular Stanford bunny from simulated tran-

sients is shown in Fig. 6. Because the image formationmodel for LCT

strictly assumes diffuse reflectance, artifacts appear in the recon-

struction in the form of streaks surrounding the object. We observe

that f−k migration produces higher-quality reconstructions for spec-

ular objects, since f−k migration makes no explicit assumptions

on the reflectance properties of the hidden object. f−k migration

outperforms LCT by a factor of 3.5× in terms of mean absolute error,

and 1.8× in terms of median absolute error which we calculate using

the same procedure as for Fig. 3.

In Fig. 7, we reconstruct the shape and albedo of the bunny from

diffuse measurements. In this case, the simulated confocal measure-

ments are provided by O’Toole et al. [2018a], which were rendered

through a modified version of PBRT [Pharr et al. 2016]. Despite

visual differences in the reconstructed volume, the depth map re-

covered by f−k migration and LCT are equally accurate in terms of

mean absolute error and median absolute error.
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Fig. 6. Comparison of f−k migration and LCT for a specular bunny. (a-b)
Measurements of the specular bunny scene, visualized as 2D images using
a sum-projection. The complex geometry and specular nature of the bunny
causes caustics to appear on the wall in (a). (c-d) Reconstructed view of
the bunny, rendered by taking the maximum intensity projection of the
volume along the z-dimension. (e-f) Difference in geometry along depth
axis. Due to the specular nature of this scene, certain regions on the bunny
do not contribute any light to the 1 m × 1 m area on the wall; these regions
are shown in black and cannot be reconstructed reliably since no signal
is present. The mean absolute error of the remaining points is 2.4 mm for
f−k migration and 8.4 mm for LCT. Similarly, the median absolute error is
1.3 mm for f−k migration and 2.4 mm for LCT. (g-h) Point cloud overlaid
to ground truth geometry of bunny.

Indoor Reconstructions. We evaluate f−k migration with our pro-

totype hardware system for a variety of indoor scenes, including a

glossy dragon, a diffuse statue, a disco ball, and a hidden room.

30 cm

(a) Reconstruction (LCT) (b) Reconstruction (f−k Mig.)

1 cm

0 cm

Er
ro

r

1 cm

0 cm
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ro

r

(c) Error Map (LCT) (d) Error Map (f−k Mig.)

Fig. 7. Comparison of f−k migration and LCT for a diffuse bunny. (a-b)
Reconstructed view of the bunny by a maximum intensity projection along
the z-dimension. (c-d) Difference in recovered geometry along depth axis.
The mean absolute error of the remaining points is 1.4 cm for f−k migration
and 1.3 cm for LCT. Similarly, the median absolute error is 2.1 mm for
f −k migration and 2.2 mm for LCT. Note that, unlike Fig. 6, all visible
points on the bunny contribute light to the wall; we therefore evaluate
reconstruction performance across the entire depth map of the bunny.

The measurements shown in Fig. 8 were captured by scanning a

512 × 512 grid of points across a 2 m × 2 m area on the wall with a

total exposure time of 10 min; longer exposures are shown in the

supplemental materials. All three objects shown in this figure have

different reflectance properties, ranging from diffuse to specular.

Both the reconstruction of f−k migration and LCT tend to be simi-

lar for diffuse and glossy objects, though f−k migration generally

appears less sensitive to noise present within the measurements.

In comparison, FBP tends to perform poorly when measurements

contain a large amount of noise. With respect to the disco ball ex-

ample, f−k migration provides a reasonable reconstruction of the

disco ball’s faceted spherical surface, whereas both FBP and LCT

suffer from numerous streak-like artifacts. Note that the backpro-

jection step in FBP is exceedingly slow, requiring several hours of

compute time; we therefore rely on LCT to quickly perform the

backprojection step and apply the Laplacian of a Gaussian filter on

the result.

The teaser shown in Fig. 1 consists of a hidden scene containing

a variety of objects, including all three objects shown in Fig. 8. This

particular scene was captured using a 180 min exposure to show

the best reconstruction performance for all three reconstruction

methods. Note that f−k migration produces a reconstruction with

the fewest visual artifacts due to its relative robustness to the variety

of complex reflectances present in the scene. Even though the diffuse

statue appears overall dimmer for f−k migration compared to FBP

and LCT, f−k migration still reconstructs the features of this statue

with high fidelity.
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Fig. 8. Comparison of reconstructions from measurements with a 10 min exposure. (a) Photographs of three hidden scenes, including a glossy dragon, a
diffuse statue, and a disco ball. (b) x -t slices of the measurement volume for the top two rows (t -axis along the horizontal), and an x -t max-projection for the
disco ball measurements (done to better highlight the specular reflections). The prototype system captured measurements over a 2 m × 2 m planar wall. (c-e)
The reconstruction methods include the (c) FBP, (d) LCT, and (e) our proposed f−k migration method. The reconstructed volumes represent a 2 m × 2 m ×

1.5 m volume of space. Because the disco ball is relatively small, we crop the reconstructed volume to better visualize reconstruction quality.

Sensitivity to Noise. To evaluate the reconstruction methods with

respect to noise, we perform reconstructions on measurements of a

bike captured over different exposure times in Fig. 9. Please refer

to the supplemental materials for more reconstruction times. The

shape of the bike is discernible after 180 min for all three methods.

However, the FBP reconstruction result is noisier than both f −
k migration and LCT, and the LCT results appears to be blurrier

than both f−k migration and FBP. f−k migration produces high-

fidelity reconstructions while also being robust to noise. With a

10 min exposure, the relative reconstruction quality of f−k migration

and LCT remains the same, but the reconstruction quality of FBP

degrades appreciably due to its sensitivity to noise.

Also note that past methods such as FBP and LCT require some

parameter tuning, especially in the presence of noise. For example,

LCTmakes use of a user-defined parameter to control its tolerance to

noise. f−k migration, on the other hand, has no tunable parameters,

and works by simply redistributing frequency coefficients.

NLOS Imaging “In The Wild”. We demonstrate the ability to per-

formNLOS imaging off of a building under indirect ambient sunlight

in Fig. 10. The scene contains the diffuse statue, a table covered by

a tablecloth, and a potted plant on top of the table. The measure-

ments were acquired over a 50 min period during twilight between

5:11-6:01 PM on Jan. 4, 2019 under partly sunny conditions. Note

that the visible wall has non-uniform albedo; we choose to not ex-

plicitly account for the wall’s varying albedo in our reconstruction

procedure, highlighting the robustness of f−k migration in practice.

Dynamic Scene Capture. Our prototype NLOS system can also

capture dynamic scenes by scanning walls quickly. In Fig. 11, we

capture the shape and position of a person at 4 Hz by sampling

a 32 × 32 grid on the wall. To address the limited signal at such

short exposure times, the person is wearing retroreflective clothing

that greatly increases the indirect signal detected at the wall. De-

spite being lower resolution than our long exposure examples, the

reconstructions clearly show the person’s position and pose. The

reconstruction time for f−k migration is 1.2 s per frame. Please refer

to the supplemental video to view the reconstruction.

6 EXTENSIONS TO f−k MIGRATION
In this section, we discuss extensions to the proposed algorithm

that allow it to be applied to non-confocally scanned data and to

work with non-planar sampling surfaces.

6.1 Processing Non-confocal Measurements
FFT-based methods, including f−k migration and LCT, are fast but

limited to processing confocal measurements. However, capturing

confocal measurements can be hard, since themeasurements include

an overwhelming contribution of direct light when illuminating and
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Fig. 9. Comparisons of reconstruction methods with measurements of a
bike captured at exposure settings of 10 min and 180 min. (Row 1) FBP
tends to amplify noise within the measurements, and greatly improves
with longer exposures. (Row 2) LCT is relatively robust to noise with the
exception of some border artifacts, but produces the blurriest results in this
scene, possibly due to specular reflectance function of the bike’s metal frame.
(Row 3) f−k migration is robust to noise and also produces high-quality
results. Refer to the supplemental materials for a picture of the bike.

imaging the same spot on the wall, as mentioned in Sec. 4. Similar

physical constraints exist in both seismology and SAR that prevent

the co-location of source and detector (e.g., due to constraints on the

physical proximity of source and detector in seismology, or caused

by the fast motion of satellites in SAR).

Here, we introduce a simple pre-processing step to convert non-

confocal measurements to confocal measurements. This correction

procedure is based on Normal Moveout Correction [Yilmaz 2001]

used in the seismic imaging community, and discussed in Lindell et
al. [2019] in the context of acoustic NLOS imaging. The approach is

to approximate the measurements as though confocally sampled at a

common midpoint location of the non-confocal source and detector.

Consider the NLOS imaging scenario in which a sensor images a

point (xc ,yc ), a pulsed laser illuminates a point (xℓ,yℓ) on a wall

located at z = 0, and the hidden volume contains a single scatterer

located at (
xc+xℓ

2
,
yc+yℓ

2
, zp ). The non-confocal time of flight t is

related to the time of flight t0 of a confocal measurement position

(a) Capture Setup (b) Line-of-Sight View

(c) f−k Mig. (d) x−t Slice
x

y

z
50 cm

Fig. 10. Outdoor NLOS capture setup and result. (a) The NLOS hardware
prototype scans a 2 × 2 m area on the side of a building in front of a scene
containing a potted plant on a table and a statue. (b) An occluder blocks the
line-of-sight view of the hidden scene while the system scans the wall. (c)
Using f−k migration, the hidden geometry is recovered. (d) A x−t slice of the
measurements (t -axis along the horizontal) for a 50 min. acquisition period.
Note that the dark region on the left-hand side of the image represents the
effect of the SPAD’s gate, used to remove direct reflections.

(a) Video Frames of Hidden Scene (b) Reconstruction

50 cmz

x

y

Fig. 11. Reconstruction of a person hidden from view at 4 Hz (i.e., each
frame consists of a 0.25 s exposure). To improve signal at short exposures,
the person is dressed in a retroreflective suit.

at the midpoint location (
xc+xℓ

2
,
yc+yℓ

2
) on the wall by

t2

0
= t2 −

1

v2

(
|xc − xℓ |

2 + |yc − yℓ |
2

)
, (6)

where |xc−xℓ | and |yc−yℓ | represent the offset, or distance between
the points imaged by the camera and illuminated by the laser. While

this expression is only approximate for scatterers whose x and y
location deviate from the midpoint, in practice, the error is small
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Fig. 12. Reconstructions of non-confocal measurements. Two non-confocal
sampling schemes are shown. (Left column) The sensor scans across a
grid of points on a wall in front of the hidden volume while the laser point
is stationary, producing a 2D set of non-confocal transients [Klein et al.
2018]. (Right column) A laser and sensor exhaustively scan points across a
wall to capture a 4D set of transients.3 After correcting these non-confocal
measurements to emulate measurements captured on a confocal grid, f−
k migration can be used to reconstruct the hidden volume with greatly
reduced computational complexity compared to an algorithm like FBP.

for distances larger than a few tens of centimeters away from the

wall and can typically be neglected, especially for NLOS systems

with temporal resolution in the tens of picoseconds.

The process to calculate the confocal approximation to non-

confocal measurements thus consists of three steps: (i) reparam-

eterize the measurements by their midpoint locations and offsets

instead of camera and laser sample locations; (ii) for each midpoint

and offset, interpolate the transient measurement using the relation-

ship of Eqn. (6) to estimate the confocal transient at the midpoint;

and (iii) average the measurements across the offset dimensions

to yield the 3D volume of confocal measurements sampled on the

midpoint grid.

Because our prototype system only captures confocal NLOS mea-

surements, we demonstrate this correction step for f−k migration

in Fig. 12 on two simulated non-confocal datasets, where the laser

is either stationary [Klein et al. 2018] or the laser and detector are

exhaustively scanned.
3
In the former case, a sensor images 256×256

points on the wall over a 0.512 m× 0.512 m area, and the laser illumi-

nates a point in the center of the scanned area as illustrated in Fig. 12.

The hidden object is placed 0.5 m away from the wall, and the re-

constructed volume measures 0.256 m × 0.256 m × 0.2 m in the x ,
y, and z dimensions. In the exhaustively scanned case, the laser

samples a grid of 16 × 16 points over a 0.6 m × 0.6 m area. For each

laser position, the sensor observes each point on the same grid. The

hidden object, shown in Fig. 12, is located 0.5 m from the wall, and

3
Zaragoza NLOS synthetic dataset by Galindo et al. (accessed on Jan. 8, 2019):

http://graphics.unizar.es/nlos_dataset.html.

the reconstructed volume measures 0.6 m × 0.6 m × 0.6 m. While

the results of FBP are comparable to those of f−k migration and LCT

for these simple scenes (see supplementary information), the com-

putational requirements are drastically reduced using the confocal

correction together with f−k migration.

6.2 Processing Non-planar Sampling Surfaces
The f−k migration algorithm reconstructs a hidden volume where

z ≥ 0, and it is assumed that a planar wall was sampled at z = 0.

This is non-ideal for several reasons, since a large region between

the wall and hidden scene is empty space (wasting computational

resources) and the wall itself may not always be planar. The former

is particularly important to consider in the context of SAR, where an

orbiting satellite remotely images the earth’s geometry with radio

waves from hundreds of kilometers above the surface.

Consider the case of sampling measurements at a constant offset

location, z = ∆z, and we desire to extrapolate the value of the field

at z = 0. As applied to Eqn. (4), this can be expressed as

Ψ(x,y, z = 0, t) =∭
Φ̄(kx ,ky , f , z = ∆z)e2πikz∆ze2πi(kx x+kyy−f t )

dkxdkydf (7)

Compensating for the constant offset ∆z in the position of the wall

amounts to multiplying the Fourier transform of the measurements

shown in Eqn. (7) by an extrapolation operator e2πikz∆z
, wherekz =√

f 2/v2 − k2

x − k2

y . Intuitively, this operator applies the appropriate

phase shifts such that the resulting quantity represents the wave as if

measured across a virtual plane at z = 0 [Margrave and Lamoureux

2018].

The same extrapolation procedure can be applied to migrate data

sampled across a general non-planar surface onto a virtual planar

wall at z = 0. Let the z-positions of the non-planar surface be pa-
rameterized by the function ∆z(x,y). Then, taking advantage of the
linearity of Eqn. (7), the procedure involves three steps: (i) isolate the

measurement transient at each spatial location (x,y) and compute its

3D-Fourier transform; (ii) apply the extrapolation operator to shift

each transient by ∆z(x,y); and (iii) linearly combine the resulting

spectra of all shifted transients to recover Φ̄(kx ,ky , f , z = 0). This

pre-processing step can be computationally optimized by processing

multiple transients sharing the same offset ∆z(x,y).
The non-planar sampling procedure is demonstrated with our

prototype NLOS system in Fig. 13. We measure two hidden retrore-

flective objects with our prototype NLOS system, where the scan-

ning surface has non-planar geometry. While methods such as FBP

can handle non-planar objects, it remains slow. Applying f−k mi-

gration (or LCT) on non-planar measurements produces a poor

reconstruction result, due to the mismatch between the data and the

image formation model. By extrapolating the measurements to a

plane at z = 0 in a pre-processing step and applying f−k migration

on the result, we achieve a much improved reconstruction of the

hidden scene.
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Fig. 13. Non-planar NLOS imaging results. (a) Measurements are captured
on a non-planar scanning surface. (b)Without correcting the measurements,
f−k migration fails to reconstruct the hidden scene. (c) FBP can account
for the non-planar surface intrinsically in the reconstruction, but is less
robust to noise and is slow. (d) Applying the wave extrapolation operator
to estimate measurements captured on a planar surface and then using
f−k migration accurately reconstructs the 3D volume.

7 DISCUSSION
In summary, we propose a wave migration procedure to solve the

confocal NLOS reconstruction problem. Compared to other recon-

struction methods such as FBP and LCT, f−k migration produces

high-quality reconstruction results for scenes containing a variety

of reflectance functions (e.g., diffuse, specular), even in the pres-

ence of noise. We perform reconstructions on simulated data and

experimental data captured with a prototype NLOS system.

Limitations. While f −k migration provides an exact solution

to the wave equation, the wave migration model and the standard

NLOS image formation based on geometric optics are not equivalent.

First, our prototype system and implementation of f−k migration

process amplitude measurements, but ignore the effect of phase.

This results in reconstruction error, as shown in Fig. 3. Second, the

wave field is highly oscillatory; the frequency of visible light may

be too high to be accurately modeled with f−k migration at the

scales we are working with.

Moreover, while the diffuse and specular reflections are caused

by an object’s surface geometry, this occurs at microscopic scales.

As a result, f−k migration only serves as an approximate solution

to the NLOS problem, even though it performs well in comparison

to state of the art solutions.

With respect to practical limitations, time-resolved NLOS imaging

remains an inherently light deficient problem, because light must

bounce three or more times through the environment to reach the

hidden scene. Every scattering event causes a dramatic decrease in

the intensity of the returning signal. This is a limitation that applies

to all existing time-resolved NLOSmethods, including f−k migration.

There are at least three ways to address light efficiency: increas-

ing the brightness of hidden objects (e.g., by scanning retroreflective
objects), extending the exposure period, and increasing the available

light. However, most objects are not retroreflective, and long expo-

sure periods fail to capture dynamic scenes. The high-power (>1 W)

laser in our prototype system is also a safety hazard, requiring pro-

tective laser safety glasses and operation by a trained individual to

minimize the risk of an eye injury.

Future Work. With respect to improving reconstruction times,

the obvious next step is to implement the f−k migration procedure

on a GPU. f−k migration is a highly parallelizable procedure and

can therefore be significantly accelerated with a GPU implementa-

tion. Similar to the real-time implementation of LCT [O’Toole et al.

2018b], we expect a GPU-based f−k migration procedure requires

only a few milliseconds of processing time for a sufficiently small

reconstruction volume (e.g., 32 × 32 spatial samples).

Our f−k migration procedure also currently does not take advan-

tage of any image priors, including the known noise characteristics

of our SPAD sensor, a non-negativity constraint on albedos, and a

spatial sparsity assumption for the scene’s hidden geometry. Simi-

lar to previously described iterative LCT procedures [O’Toole et al.

2018a], an iterative f−k migration procedure could incorporate

these priors to achieve even higher-fidelity NLOS reconstructions.

Conclusion. The ability to image objects hidden from sight has

a variety of applications in remote imaging and surveillance. By

drawing inspiration and adapting ideas from over 40 years of work

since Stolt’s original work in seismology [1978], our solution to the

NLOS problem provides superior reconstruction results than the

current state of the art. We also foresee f−k migration potentially

becoming a useful numerical method for migrating optical wave

fields in other areas of computer graphics and vision, especially

at microscopic scales (e.g., computational microscopy, computer-

generated holography).
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