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Fig. 1. Large Field-of-View Imaging With Thin-Plate Optics. We design a lens with compact form factor using one (or two) optimized refractive surfaces on a
thin substrate (left). This optimization results in a dual-mixture point spread function (center-left insets), which is nearly invariant to the incident angle,
exhibiting a high-intensity peak and a large, almost constant, tail. We show the sensor measurement (center) and image reconstruction (right) in natural
lighting conditions, which demonstrate that the proposed deep image recovery effectively removes aberrations and haze resulting from the proposed thin-plate
optics. Our prototype single element lens achieves a large field-of-view of 53◦ with a clear aperture of f /1.8 and effective aperture of f /5.4, see text.

Typical camera optics consist of a system of individual elements that are
designed to compensate for the aberrations of a single lens. Recent com-
putational cameras shift some of this correction task from the optics to
post-capture processing, reducing the imaging optics to only a few optical
elements. However, these systems only achieve reasonable image quality
by limiting the field of view (FOV) to a few degrees – effectively ignoring
severe off-axis aberrations with blur sizes of multiple hundred pixels.

In this paper, we propose a lens design and learned reconstruction archi-
tecture that lift this limitation and provide an order of magnitude increase
in field of view using only a single thin-plate lens element. Specifically, we
design a lens to produce spatially shift-invariant point spread functions, over
the full FOV, that are tailored to the proposed reconstruction architecture.
We achieve this with a mixture PSF, consisting of a peak and and a low-pass
component, which provides residual contrast instead of a small spot size as
in traditional lens designs. To perform the reconstruction, we train a deep
network on captured data from a display lab setup, eliminating the need
for manual acquisition of training data in the field. We assess the proposed
method in simulation and experimentally with a prototype camera system.
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We compare our system against existing single-element designs, including
an aspherical lens and a pinhole, and we compare against a complex multi-
element lens, validating high-quality large field-of-view (i.e. 53◦) imaging
performance using only a single thin-plate element.
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1 INTRODUCTION
Modern imaging techniques have equipped us with powerful capab-
ilities to record and interact with the world – be that in our personal
devices, assistive robotics, or self-driving vehicles. Coupled with
recent image processing algorithms, today’s cameras are able to
tackle high-dynamic range and low-light scenarios [Chen et al. 2018;
Hasinoff et al. 2016]. However, while image processing algorithms
have been evolving rapidly over the last decades, commercial op-
tical systems are largely still designed following aberration theory,
i.e. with the design goal of reducing deviations from Gauss’s linear
model of optics [Gauss 1843]. Following this approach, commercial
lens systems introduce increasingly complex stacks of lens elements
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to combat individual aberrations [Kingslake and Johnson 2009]. For
example, the optical stack of the iPhone X contains more than six
aspherical elements, and professional zoom optics can contain more
than twenty individual elements.
Although modern lens systems are effective in minimizing op-

tical aberrations, the depth of the lens stack is a limiting factor in
miniaturizing these systems and manufacturing high-quality lenses
at low cost. Moreover, using multiple optical components intro-
duces secondary issues, such as lens flare and complicated optical
stabilization, e.g. in a smartphone where the whole lens barrel is
actuated. In particular, the design goals of large field-of-view (FOV,
e.g. > 50◦), high numerical aperture (NA), and high resolution (e.g.
4k resolution) stand in stark contrast to a compact, simple lens sys-
tem. Existing approaches address this challenge using assemblies
of multiple different lenses or sensors [Brady et al. 2012; Light.co
2018; MobilEye 2018; Venkataraman et al. 2013; Yuan et al. 2017],
including widely deployed dual-camera smartphones, each typically
optimized for a different FOV. While providing some reduction in
footprint, such spatial multiplexing increases the number of optical
elements even further and requires higher bandwidth, power and
challenging parallax compensation post-capture [Venkataraman
et al. 2013].
In this work, we deviate from traditional lens design goals and

demonstrate high-quality, monocular large-FOV imaging using a
single deep Fresnel lens, i.e., a thin lens with a micro structure
allowing for larger than 2π modulation. Specifically, we propose a
learned generative reconstruction model, a lens design tailored to
this model, and a lab data acquisition approach that does not require
painful acquisition of real training images in the wild.
The learned reconstruction model allows us to recover high-

quality images from measurements degraded by severe aberrations.
Single lens elements, such as spherical lenses or Fresnel phase
plates [Peng et al. 2015], typically suffer from severe off-axis ab-
errations that restricts the usable FOV to around 10◦ [Heide et al.
2016, 2013; Peng et al. 2015]. Instead, we propose a novel lens design
that offers spatially invariant PSFs, over the full FOV, which are
designed to allow for aberration removal by the proposed learned
reconstruction model. We achieve this by abandoning the design
goal of minimal spot size, and instead balance the local contrast over
the full FOV. This alternative objective allows us to build on existing
optimization tools for the optics of the proposed co-design, without
requiring end-to-end design. The resulting thin lens allows the re-
construction network to detect some contrast across the full FOV,
invariant of the angular position, at the cost of reducing contrast in
the on-axis region. As a consequence, the proposed computational
optics offers an order of magnitude larger FOV than traditional single
lenses, even with the same reconstruction network fine-tuned to
such alternative designs.

The following technical contributions enable large FOV imaging
using thin, almost planar, optics:

• We propose a single free-form lens design tailored to learned
image reconstruction methods for large FOV high-quality
imaging. This design exhibits almost invariant aberrations
across the full FOV that balance the contrast detection prob-
ability (CDP) of early network layers.

• Wepropose a generative adversarial model for high-resolution
deconvolution for our aberrations of size ≤ 900 pixels.

• The model is trained on data acquired with a display lab
setup in an automated manner, instead of painful manual
acquisition in the field. We provide all models, training and
validation data sets.

• We realize the optical design with two prototype lenses with
effective thickness of 120 µm, aperture size of 23.4 mm, and a
FOV of 53◦ – one with a single optical surface, the other with
two optical surfaces (both sides of the same flat carrier). We
experimentally validate that our approach offers high image
quality for a wide range of indoor and outdoor scenes.

Overview of Limitations. We note that, compared to conventional
digital cameras, the proposed reconstruction method requires more
computational resources. Although our thin-plate lens design re-
duces the form factor compared to complex optical systems, its back
focal length is comparable to conventional optics.

2 RELATED WORK
Optical Aberrations and Traditional Lens Design. Both monochro-

matic and chromatic aberrations are results of the differences of the
optical path length when light travels trough different regions of a
lens at different incident angles [Fowles 2012]. These aberrations
manifest themselves as unwanted blur which becomes more severe
with increasing numerical aperture and field-of-view [Smith 2005].
Conventional lens design aims at minimizing aberrations of all kinds
by increasingly complex lens stacks [Sliusarev 1984]. This includes
designing aspherical surfaces and introducing lens elements using
materials with different optical properties.
State-of-the-art optical design software is a cornerstone tool for

optimizing the surface profiles of refractive lens designs. However,
while hyper-parameter optimization tools are becoming mature, the
design process still relies on existing objectives, so-calledmerit func-
tions, that find a compromise across a variety of criteria [Malacara-
Hernández and Malacara-Hernández 2016; Shih et al. 2012], trading
off the point spread function (PSF) shape across sensor locations,
lens configurations (e.g. zoom levels) and target wavelength band.

Computational Optics. A large body of work on computational
imaging [Dowski and Cathey 1995; Levin et al. 2009; Stork and Gill
2013, 2014] has proposed to design optics for aberration removal
in post-processing. These methods often favor diffractive optical
elements (DOEs) over refractive optics [Antipa et al. 2018; Heide
et al. 2016; Monjur et al. 2015; Peng et al. 2016] because of their large
design space. Moreover, recent work proposed caustic (holographic)
designs, for projection displays or imaging lenses [Papas et al. 2012;
Peng et al. 2017; Schwartzburg et al. 2014]. To simplify the inverse
problem in post-processing, all of the described approaches ignore
off-axis aberrations by restricting the FOV to a few degrees – ex-
isting approaches do not realize monocular imaging with a large
FOV.

Several approaches to end-to-end optical imaging were recently
proposed, where parametrized optics and image processing are
jointly optimized for applications in extended depth of field and
superresolution imaging [Sitzmann et al. 2018], monocular depth
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estimation [Chang and Wetzstein 2019; Haim et al. 2018; Wu et al.
2019], and image classification [Chang et al. 2018b]. However, none
of these approaches aim at large FOV imaging and all of them build
on simple paraxial image formation models, which break for large
fields of view. Moreover, they are limited to a single optical surface.
We overcome these challenges by engineering PSFs over a large FOV,
and, relying on existing optical design tools that support complex
multi-surface/material designs, optimize for a well-motivated dual-
mixture design tailored to deep reconstruction models.

Manufacturing Planar Optics. Various manufacturing methods
exist that enable “planar” optics with low-depth optical surface,
i.e. less than 1 mm. Commercial miniature form factor optics like
the lenses in smartphone cameras, can be manufactured using ma-
ture injection molding techniques [Oliver et al. 2010]. Alternative
fabrication methods for thin-plate lenses include diffractive optics
and metalenses [Duoshu et al. 2011; Genevet et al. 2017], which
require nano-fabrication methods like photolithography and nano-
imprinting [Ahn and Guo 2009; Chou et al. 1996]. The UV-cure
replication technique [Zoberbier et al. 2009] can facilitate manu-
facturing wafer-scale optical elements. Note that creating a Fresnel
lens with a clear aperture diameter of 23.5 mm and a focal length of
43 mm requires, as in this work, a feature size smaller than 300 nm,
which is beyond the capability of the photolithography methods
used in many recent DOE works [Heide et al. 2016; Peng et al. 2016;
Sitzmann et al. 2018]. Freeform lenses with a larger aperture and
continuous surfaces can be manufactured using diamond turning
machining [Fang et al. 2013]. The continuous surface preserves
light efficiency and works under broadband illumination, while the
lenses are usually thick and bulky because of the local curvature
constraints.

In this work, we use high-precision diamond turningmachining to
prototype the proposed lenses. Instead of fabricating a freeform lens
with continuous surface, e.g., as in [Sitzmann et al. 2018], we wrap
the optimized surface profile using coarse wrap-around depth values
instead of wavelength-scale wrapping in diffractive lens designs,
see Fig. 1. This allows us to design a Fresnel-inspired free-form lens
with the advantages of both refractive optics and diffractive optics:
we achieve a thin form factor while reducing chromatic aberrations.

Image Quality. Imaging describes the signal chain of light being
transported from a scene patch of interest to the camera, focusing
in the camera optics, digitization of the focused photon flux on the
sensor, and post-processing of the measured data. During each of
these individual steps, information about the scene patches of in-
terest may be lost or corrupted. Various hand-crafted image quality
metrics exist that measure the cumulative error of this imaging
process [Mitra et al. 2014; Wang et al. 2004], with or without known
ground-truth reference [Mittal et al. 2012], or allow to individually
characterize components of the imaging stack using calibration
setups [EMVA Standard 2005; Estribeau and Magnan 2004]. Typical
performance metrics are the signal-to-noise ratio (SNR) [Parker
2010] and modulation transfer function (MTF) [Boreman 2001; Es-
tribeau and Magnan 2004]. While these metrics are widely reported
and measurement setups are readily available, they are also not free
from disadvantages due to their domain-agnostic design. For ex-
ample, high SNR does not guarantee a perceptually pleasing image,

which has sparked recent work on perceptual loss functions [John-
son et al. 2016]. Moreover, SNR increases in the presence of glare
and quantization, which can yield inconclusive results when used
as a design metric [Geese et al. 2018].
We design the proposed optical system in conjunction with the

learned image reconstruction methods. To this end, we analyze
the behavior of the early layers in our generator, which relate to
the response of local contrast features in the scene. Relying on a
probabilistic measure [Geese et al. 2018], we assess the ability to
detect or miss such local features across the full FOV. This insight
allows us to tailor the proposed lens design to our network-based
reconstruction method.

Learned Image Reconstruction. Traditional deconvolution meth-
ods [Cho et al. 2012; Heide et al. 2013; Krishnan and Fergus 2009]
using natural image priors are not robust when working with ex-
tremely large, spatially invariant blur kernels that exhibit chromatic
aberrations and other challenging effects. Unfortunately, the lens
design proposed in this work produces large PSFs that present a
challenge to existing deconvolution methods which suffer in image
quality for large aberrations, necessitating a custom image recon-
struction approach. Note that computationally efficient forward
models for large spatially-varying convolutions have been investig-
ated before [Gilad and Von Hardenberg 2006]. Over the last years, a
large body of work proposed data-driven approaches for image pro-
cessing tasks [Schuler et al. 2013; Xu et al. 2014; Zhang et al. 2017].
Specifically addressing deconvolution, Nah et al. [2017] propose a
fully connected convolutional network that iteratively deconvolves
in a multi-stage approach. More recently, generative adversarial
networks (GANs) have been shown to provide generative estimates
with high image quality. Kupyn et al. [2017] demonstrate the prac-
ticability of applying GAN reconstruction methods to deblurring
problems.

All of these approaches have in common that they require either
accurate PSF calibration or large training data that has been manu-
ally acquired. In contrast, we propose a lab capture process to gener-
ate a large training corpus with the PSF encoded in the captured data.
Note that the large aberrations make training on very small image
patches prohibitive. The proposed automated acquisition approach
allows for supervised training on a very large training set of full-
sized images, which are needed to encode large scene-dependent
blur. The training approach, together with the proposed model and
loss function, allows us to tackle the large scene-dependent blur,
color shift and contrast loss of our thin-plate lens design.

3 DESIGNING OPTICS FOR LEARNED RECOVERY
In this work, we describe an optical design tailored to learned recon-
struction techniques for large field-of-view, thin-plate photography.
The proposed optical system is shown in Figure 2. In contrast to
state-of-the-art compound lenses, it consists of a single, almost flat,
element. The two core ideas behind the proposed optical design
are the following: first, to achieve a large FOV, we constrain the
PSFs of our lens to be shift-invariant for the incident angle. Second,
although such PSFs exhibit large spot sizes, we engineer aberrations
that preserve residual contrast and hence are well-suited for learned
image reconstruction.
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Fig. 2. Computational thin-plate lens imaging with large field-of-view. Left: learned early layers’ filters applied on input scene; Center-left: optical design that
preserves local contrast across full FOV. The designed optical element has a Fresnel lens surface; Center-right: calibrated PSF patches for different incident
angles of our prototype lens (images gamma-tonemapped for visualization); Right: overview of the image processing pipeline and our recovery framework,
which learns a mapping for the linear input to the recovered output. We introduce a learned reconstruction architecture trained using data that can be
efficiently acquired in a display-capture lab setup (see details in Section 6).

Our design is motivated by a large body of work on computational
photography with PSF engineering – designing PSFs invariant to
a target characteristic, instead of minimizing spot size, and com-
putation to remove the non-compact aberrations. Similar to how
existing work extends the depth of field [Cossairt and Nayar 2010]
or spectral range [Peng et al. 2016; Wang et al. 2016], we are the
first to apply this idea to extending the field of view.

To this end, we rely on the insight that the filters of early layers
of recent deep models, across applications in computer vision and
imaging, have striking similarity – these early layers are gradient-
like filters and respond to local contrast as essential low-level in-
formation content in the measurement. As many recent learned
architectures rely on common low-level backbones, which are then
transferred to different higher-level tasks [Bengio 2012; Huh et al.
2016], this transfer-learning offers an interesting opportunity for the
design of imaging systems. We engineer the PSFs of the proposed
optical design, shown in Figure 2, to exhibit a peaky distribution.
While the peak contribution maximizes the probability of detecting
local contrast features, the low-frequency part is extremely large
(∼900 pixels on the experimental sensor system covered below)
and therefore leads to very low filter responses in the early layers.
In contrast to conventional spherical elements, see Figure 7, this
PSF exhibits the peak-preserving distribution across the full sensor
which enables large FOV imaging with this single optical element.

Given a raw measurement acquired with the proposed thin-plate
lens system, we recover a high-quality image using a generative
adversarial network which is trained to eliminate all measurement
degradations and directly outputs a deblurred, denoised, and color-
corrected image, see Figure 2. To train the network in a semi-
supervised fashion, using labeled and unlabeled data to learn robust
loss functions along with the model parameters, we require a train-
ing dataset with ideal reference images and corresponding blurry
captures. Instead of manually acquiring such a dataset, e.g., by se-
quentially swapping optics for a scene, we propose an automated
lab setup which displays known ground-truth images on a display.

In the following, we first describe the proposed optical design in
Section 4, before introducing the reconstruction architecture and
training methodology in Section 5.

4 LENS DESIGN
Throughout the rest of this paper, we consider rotationally sym-
metrical designs. Although our approach can be generalized to
rotationally asymmetrical profiles, rotational symmetry facilitates
manufacturing using turning machines.

4.1 Ideal Phase Profile
The phase of a lens describes the delay of the incident wave phase
introduced by the lens element, at the lens plane. The geometrical
(ray) optics model, commonly used in computer graphics, models
light as rays of photon travel instead of waves. This model ignores
diffraction, e.g. for light passing through a narrow slit. Although be-
ing an approximation to physical optics, ray optics still can provide
an intuition: the perpendiculars to the waves can be thought of as
rays, and, vice versa, phase intuitively describes the relative delay
of photons traveling along these rays to the lens plane, as illus-
trated with red lines in Fig. 3. Hence, the phase of a thin lens is its
height profile multiplied with the wave number and the refractive
index [Goodman 2005; Hecht 1998].
We design the proposed lens by first specifying an ideal phase

profile for perfect, spatially invariant PSFs over the full FOV, i.e.,
mapping incident rays from one direction to one single point. Be-
cause it will turn out intractable to manufacture this ideal lens, we
propose an aperture partitioning strategy as an approximation. The
deviation of this partitioned phase profile to the ideal profile is a
large low-frequency component which is independent of the in-
cident angle. Together with the peak-component, which preserves
local contrast over the full FOV, these two components make up the
desired spatially invariant dual-mixture PSF.
To specify the ideal phase profile ϕ(r ,ωi ) for an incident ray

direction i , and radial position r , see Figure 3, we assume a physical
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Fig. 3. Schematic of ray geometries in a radially symmetric design manner
(left), and the ideal phase profile distribution subject to incident angle (right).
For visualization purpose the phase map is wrapped by 1,000π , and the
vertical axis is normalized with respect to the focal length.

aperture size D, focus distance f , and set:

ϕ(r ,ωi ) = −k

[
r · sinωi −

∫ r

0
sinθ (r1,ωi )dr1

]
, (1)

where k represents here the wave number that is specified by the
wavelength, and ωi represents the incident angle of ray direction
i [Kalvach and Szabó 2016]. For this ideal lens profile, we define the
output angle as:

θ (r ,ωi ) = arctan
(
ρ(ωi ) − r

f

)
, (2)

since the ideal lens design maps the incident rays from one direction
ωi to a single point with spatial position ρ(ωi ) on the image plane.

Next, by inserting Eq. 2 into Eq. 1, we derive the target phase ϕ
as:

ϕ(r ,ωi ) = −k

[
r · sinωi −

∫ r

0

ρ(ωi ) − r1√
f 2 + (ρ(ωi ) − r1)2

dr1

]
(3)

= −k

[
r · sinωi +

√
f 2 + (ρ(ωi ) − r )2 −

√
f 2 + ρ(ωi )2

]
.

The ideal phase profile from Eq. 3 is visualized in Figure 3 (right).
We observe a drastic variation when approaching larger incident
angles. In other words, the same position on the lens aperture would
need to realize different phases for different incident angles, which
is not physically realizable with thin plate optics.

4.2 Aperture Partitioning
Realizing the ideal phase profile is intractable to manufacture over
the full aperture, as illustrated by the large angular deviations
needed in off-axis region in Figure 3. To overcome this challenge,
we split the aperture into multiple sub-regions, and assign each sub-
region to a different angular interval, similar to prior work [Levin
et al. 2009; Zhu et al. 2013] for refractive optics. We note that
this concept is also closely related to specializing optics depend-
ing on the incident ray direction in light field imaging [Ng et al.
2005], for example, tailoring optical aberrations for digital correc-
tion [Ng et al. 2012]. Specifically, we introduce a virtual aperture
A(r ,ωi ) = circ[r − ν (ωi)] to partition the incident light bundle of
each direction into a peak component that we optimize for, while
treating out-of-aperture components as out-of-focus blur. Here,

circ[·] is a function representing a circular aperture, ν (ωi ) indicates
the axial center of the virtual aperture subject to the ith incident
ray direction. With this aperture partitioning, we optimize for the
phase profile solving the following optimization problem:

[ϕ0(r ), ρ,ν ] = arg min
ϕ0(r ),ρ ,ν

N∑
i=1

∥A(r ,ωi )(ϕ0(r ) − ϕ(r ,ωi ))∥
2
2 . (4)

Note that the virtual aperture is not a physical aperture of the
optical system, but is only introduced as a conceptual partitioning
in the lens optimization. Figure 4 shows the virtual apertures for
uniformly sampled directions superimposed on the real aperture.
For every direction, we optimize only for the rays that pass through
the corresponding virtual apertures; these will be focused into a
sharp PSF, while all other rays from the same direction that miss A
but pass through the full aperture D will be blurred and manifest as
a low frequency “haze” in the measurement.

4.3 Fresnel Depth Profile Optimization
We solve the optimization problem fromEq. 4 using Zemax [Geary

2002]. While Eq. 4 minimizes phase differences, Zemax interprets it
as minimizing the optical path difference (OPD). Zemax allows us to
piggy-back on a library of parameterized surface types, and directly
optimize a deep Fresnel lens profile (a deeper micro-structure than
regular 2π modulation.) instead of sequentially optimizing for the
phase and depth in a two-stage process. We formulate the problem
from Eq. 4 using the multiple configuration function with the num-
ber of the configurations set to the discretized aperture directions
(7 in this paper, uniformly sampled on half of the diagonal image
size). We set the size of each virtual aperture – the effective aperture
that contributes to focusing light bundles – to one third of the clear
aperture. As shown in Figure 4, the center ν of the virtual aperture
for each direction along the clear aperture plane can be modeled by
shifting a stop along the optical axis. This allows us to optimize the
location of the virtual aperture by setting the stop position as an
additional optimization variable. The merit (objective) function used
in Zemax includes terms for minimizing the wavefront (phase) error
at each sampled direction, and enforcing a desired effective focal
length (EFL). We refer the reader to the supplementary document
for additional details.

4.4 Aberration Analysis
The optical aberrations of the proposed design have the following
properties. The chromatic variation is small because a deep Fresnel
surface results in only small focal length differences in the visible
wavelength region. Off-axis variation (i.e. spatial intensity variation
of PSFs across FOV) are small since we only control a part of light
of each direction to focus into the sharp peak (see Figures 2 and 7).
For each viewing direction, the PSF exhibits two components,

a high-intensity peak, which preserves local contrast, and a large
low-frequency component. We note that this property differs from
conventional spherical or aspherical singlets with the same NA
whose field curvature can be severe. Although the low-frequency
PSF component reduces contrast, it does so uniformly across the
FOV. In contrast to conventional single element optics, which have
very poor contrast in regions far from the optical axis (required for
wide-FOV imaging), it is this design which allows us to preserve
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Fig. 4. Schematic of aperture partitioning approach. The spatial position
of a virtual aperture (specified by the offset from the optical axis and visual-
ized with different colors) along the radial direction is determined by the
controlled position of the stop (on the left), that is further dependent on
incident ray directions. The synthetic spot distributions of three directions
are presented as inserts, from each pattern we observe a sharp peak that
fits well to our design goal of PSFs.

the ability to detect some residual contrast, instead of completely
losing contrast.

5 LEARNED IMAGE RECONSTRUCTION
In this section, we describe the forward image formation model,
which models sensor measurements using the proposed optical
design, and we present our learned reconstruction model which
retrieves high-quality images from these measurements.

5.1 Image Formation Model
Modern digital imaging consists of two main stages: a first stage
which records scene information in measurement via optics and a
sensor, and a second stage which extracts this information from the
measurements using computational post-processing techniques.

In the recording stage, a sensor measurement bc for a given color
channel c can be expressed as:

bc (x,y) =

∫
Qc (λ) · [p(x,y,d, λ, ic ) ∗ ic (x,y)]dλ + n(x,y), (5)

where the PSFp(x,y,d, λ, ic ) varies with the spatial position (x,y) on
the sensor, the depthd of scene, and the incident spectral distribution
λ. Qc is the color response of the sensor, and i(x,y) and n(x,y)
represent the latent image and measurement noise, respectively. The
PSF may also exhibit non-linearity in high-intensity regions, which
is why the PSFp takes the latent channel ic as further parameter. The
noise may have complex characteristics, including signal-dependent
shot noise as well as read noise introduced in the measurement
process. We refer readers to the EMVA Standard [2005] for a detailed
discussion of noise sources and calibration of the proposed model
from Eq. (5).
Given a sensor measurement, conventional image processing

pipelines perform a sequence of operations, each addressing an
individual reconstruction problem, such as white balance, demosa-
icing, color calibration, digital gain, gamma compression and tone
mapping [Ramanath et al. 2005]. Errors occurring during any of

these operations can accumulate, adding to the ill-posedness of the
overall image reconstruction problem [Brooks et al. 2018; Heide
et al. 2014], that is recovering i from b by inverting Eq. 5.

To recover a latent image from the degraded image, existing meth-
ods typically perform deconvolution using optimization [Krishnan
and Fergus 2009], addressing the ill-posedness of the reconstruction
problem using natural image priors. We refer to the supplement-
ary document for details on traditional deconvolution methods.
However, large PSFs with hundreds of pixels in diameter and high
wavelength and depth-dependency cannot be tackled by existing
methods. While the scene dependency of the aberrations may be ad-
dressed with blind deconvolution approaches, thesemethods are cur-
rently limited to small PSF sizes of ca. 10-20 pixels in diameter [Sun
et al. 2013]. Hence, existing image reconstruction methods cannot
compensate for the low-frequency tail of the proposed PSF and
scene-dependent PSF variation, as shown in Figure 8.

To handle the scene-dependence and non-linearities in the image
formation model, i.e., PSF dependency on i in Eq. (5), we deviate
from existing methods in that we do not pre-calibrate a PSF for
a given illumination, and approximate the scene with broadband
spectral response, but instead solve for a given image without an
intermediate PSF estimate. This is done by directly learning a image-
to-image mapping using a deep neural network. Next, we describe
the network architecture, training methodology, and training data
acquisition.

5.2 Generative Image Recovery
We propose a generative adversarial network (GAN) for the retrieval
of the latent clean image i from corrupted raw sensor measurements
b. Instead of relying on existing hand-crafted loss functions, which
encourage overfitting as we will show below, using a GAN allows us
to learn a robust loss function along with the reconstruction model.
Moreover, in the learning of this loss function, we can augment
training pairs for supervised training with unpaired training data
from high-quality lens captures. The proposed framework is shown
in Figure 5. Specifically, we adopt a variant of the U-Net architec-
ture [Ronneberger et al. 2015], as our generative modelG , referred to
asGenerator in the following, while the discriminative critic network
D is referred to as Discriminator. During training, the generator is
trained to produce latent estimates that “fool” the discriminator net-
work into classifying the estimate as a high-quality image, while this
discriminator is trained to better distinguish between images from
compound lenses and the estimates produced from the generator.
We use training data without blurry correspondences to augment
the training of the discriminator, in a semi-supervised fashion, while
the generator model is trained using a combination of a learned
perceptual loss between the predicted image and the reference, and
the discriminator loss using a Wasserstein generative adversarial
framework.

5.2.1 Network Architecture.

Generator. The proposed generator network consists of a con-
tracting path and an expansive path (Figure 5). Specifically, the
contracting path consists of a 4×4 initial feature extraction layer,
the repeated application of the Leaky rectified linear unit (Leak-
yReLU), a 4×4 convolution layer with stride 2 for downsampling,
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Fig. 5. Generative image reconstruction architecture. The generator model is shown on the left and the layer configurations of encoder/decoder stages are
illustrated with different colored blocks (bottom-left). We apply skip connections in every decoder stage. In particular, we use a combination of a perceptual
loss between the predicted image and the ground-truth, and a Wasserstein generative adversarial loss. The discriminator model for the GAN loss is similar to
the encoder architecture.

and instance normalization layers. The LeakyReLU allows back-
propagating the error signal to the earlier layer and the instance
normalization (i.e. single batching training in this work), to avoid
the crosstalk between samples in a batch. At each downsampling
convolution, we double the number of feature channels. The total
number of downsampling convolution steps is 7.

The expansive path consists of a stack of rectified linear units (Re-
LUs), the upsampling convolution layer, and the instance normaliza-
tion. We use a nearest neighbor upsampling and a 3×3 convolution
layer instead of the transposed convolution, that practically reduces
the checkerboard artifacts caused by uneven overlaps [Odena et al.
2016]. Moreover, as shown in Figure 5, we concatenate the feature
maps from the contracting path to introduce high frequencies so as
to preserve fine scene details.

Discriminator. As illustrated in Figure 5, the discriminator con-
sists of five 4×4 convolution layers with stride 2 for downsampling,
where each layer is followed by a LeakyReLU activation layer and
instance normalization, except for the first. We also double the num-
ber of feature channels after each downsampling layer. See Figure 5
and its caption for additional detail.

5.2.2 Loss Functions.

Perceptual loss. Feed-forward CNNs are often trained using a per-
pixel loss (e.g. usually ℓ1 or mean absolute error (MAE) loss and ℓ2 or
mean square error (MSE) loss) between the output and the ground-
truth labels. However, this approach may lead to overly blurry out-
puts due to the pixel-wise average of possible optima [Ledig et al.
2017]. To obtain visually pleasing results that generalize to real
data, we add a perceptual loss [Johnson et al. 2016] to our learned
GAN loss. This loss component compares two images subject to the
high-level representations from the pre-trained CNN. We use the
VGG19 network in all our experiments. Let Ak (i) be the activations
at the kth layer of the pre-trained VGG19 network Φ with an input
image i . Given a feature map Ak (i) with the shape ofCk ×Hk ×Wk ,
the Gram matrix, with a size of Ck ×Ck , can be expressed as:

GramΦ
k (i) = ψψ

T /CkHkWk , (6)

whereψ presents the reshaped Ak (i) with a size of Ck × HkWk . As
a result, our content loss is described as:

Lc = Σk ∥Gram
Φ
k (i) −GramΦ

k (G(b))∥1. (7)

Specifically, we choose the k = 15 layer (i.e. relu3_2) after ReLU
operations of the pre-trained VGG19 network to generate the feature
map of the input image i .

Adversarial loss. We use an adversarial loss to learn a robust loss
function, along with the actual generator network, which better
generalizes to measured data than hand-crafted per-pixel losses.
Instead of adopting a vanilla GAN [Goodfellow et al. 2014] training
procedure, we rely on variant of the Wasserstein GAN [Arjovsky
et al. 2017] with a gradient penalty to enforce a more robust training
process with the U-Net generator in our training pipeline. The
resulting adversarial loss can be expressed as:

Ladv = E
i∼Pr

[D(i)] − E
ī∼Pд

[D(ī)]︸                        ︷︷                        ︸
cr it ic loss

+ λд E
ī∼Pī

[(∥∇īD(ī)∥2 − 1)2]︸                          ︷︷                          ︸
дradient penalty

, (8)

where Pr and Pд are distributions of data and model, respectively.
Note that r contains here more sharp captured images than corres-
ponding blurry/sharp pairs. Intuitively, the adversarial loss attempts
to minimize the structural deviation between a model-generated
image ī = G(b) and a real image i , penalizing missing structures,
while relaxing the requirements on high color-accuracy and SNR
in heavily blurred regions. We will analyze this behavior further in
Sec. 8.4.

Overall loss. We use a weighted combination of both loss func-
tions:

Ltotal = Lc + λaLadv . (9)

During training, Generator G and Discriminator D alternate in a way
that G gradually refines the latent image to “convince” D the result
is a real image free of degradations, while D is trying to distinguish
between real and generated samples, including corresponding and
non-corresponding real captures, by minimizing the Wasserstein
distance.
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6 DATASETS
Data Acquisition. To be successful, the supervised training set

component of the proposed architecture requires corresponding
sharp ground truth images, and blurry captures using the proposed
optical system. Manual acquisition of this dataset in the wild, e.g.,
changing optics in a sequential fashion per capture, would require
complicated robotic systems to ensure identical positions, and cap-
tures of various sceneries. Alignment of nearby placed cameras also
poses a major hurdle due to the severe aberrations in the prototype,
which make alignment in parallax areas very challenging.

To overcome these restrictive capture issues, we have built a
display-capture lab setup that allows us to efficiently generate a
large amount of training data without large human labor. This is
realized by capturing images that are sequentially displayed on a
high resolution LCD monitor (Asus PA32U), as shown in Figure 6.
As a benefit of the fact that our PSF is shift-invariant, the proposed
lens design does not require training over the full FOV. Instead,
we train our network on a narrow field of view, which allows us
to overcome prohibitive memory limitations during training with
current generation GPU hardware. Moreover, this feature further
aids the calibration over our large FOV. During testing we run the
network on the CPU to process full-resolution measurements. We
use two datasets using a Canon 5D and a Nikon D700 from the
Adobe 5k set which contains in total 814 images. To cover the full
FOV, we additionally select the first 200 images by name order from
the 814 images and capture them by setting the monitor at large
FOV. The test set is selected by name order (i.e. first 100 images)
from the Canon 40D subset of the Adobe 5k set. All the images
are resized to fit with the resolution of the display monitor and
converted to Adobe RGB colorspace.
Before starting the image capture procedure we calibrate the

setup as follows:
(1) We calibrated the tone curve and color reproduction of the LCD

monitor using the i1 Pro calibration suite.
(2) We calibrated the system uniformity (including both the bright-

ness uniformity of the LCD monitor and imaging vignetting of
the capturing camera) by capturing a white calibration chart.

(3) We obtained coarse distortion correction parameters of the cap-
tured image and the alignment transfer matrix between the cap-
tured image and ground-truth image displayed on the monitor
by capturing several known checkerboard patterns displayed
on the LCD monitor [Zhang 2000].

Training Details. For training purposes, we crop both the pre-
processed raw and ground-truth images into 512×512 and 1024×1024
patch pairs. These training pairs are randomly flipped and rotated
to augment the training process. To preserve color fidelity, we nor-
malize the image to range [0, 1] instead of subtracting the mean
and dividing its corresponding standard deviation. We choose the
ADAM optimizer with β1 = 0.5 and β2 = 0.999, which exhibits
robustness to the high noise level of our input. At first, the learning
rate is initialized as 0.0001 for the first 100 epochs and linearly de-
cayed to 0 over another 150 epochs using 512×512 patch pairs. Then,
the learning rate is initialized as 0.00002 for the first 50 epochs and
linearly decayed to 0 over another 50 epochs using 1024×1024 patch
pairs. The batch size is set to 1 to avoid the crosstalk among samples

Fig. 6. Top: Illustration of our display-capture setup for preparing the train-
ing data set. Selected displayed and captured image pairs are shown as
inserts; Bottom: Results on testing set images captured by our lenses. For
each example we show the degraded measurement and reconstruction
side-by-side.

in the batch. In all of our experiments, we set the loss weights in
Eq. 9 to be λa = 0.1. During each training iteration, D is updated 5
times while G is updated once.

The proposed network architecture is implemented with PyTorch
0.4, and the training process takes around 80 hours in total on a
single Nvidia Tesla V100 GPU. Limited by the GPU memory that
currently only allows processing up to around 12M pixels, we are
unable to fit in a full resolution (i.e. 6k) image on the GPU. As an
alternative solution, we solve the full resolution versions on E5-
2687 CPUs which process each 6k image in 6 minutes. In addition,
processing a 4k × 3k image on the GPU takes around 10s. Note, that
with the rapidly emerging support of neural network computing, a
hybrid memory architecture with efficient caching (e.g. GraphCore’s
IPU architecture) and quantization [Chang et al. 2018a] may lift this
hardware limitation within the coming year.

7 PROTOTYPE
We realize the proposed lens objective, using the same optimization
method, for two single element lenses, one with two optical sur-
faces (on both sides of the same flat carrier), the other with a single
optical surface. The field of view and focal length of the lens proto-
types are 53◦ and 43 mm with a real clear aperture size of 23.4 mm,
respectively. To fabricate our lenses, we use a CNC machining sys-
tem that supports 5-axis single point diamond turning (Nanotech
350FG) [Fang et al. 2013]. The substrate is polymethyl methacrylate
(PMMA) with a refractive index of 1.493 at the principle wavelength
of 550 nm. We use 200π phase modulation rather than regular 2π to
wrap the optimized height map since our designed surface type is a
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deep Fresnel surface. As a result, the final prototype lens has an ef-
fective modulation thickness of 120 µm and a total thickness of 3 mm
(10 mm) including the planar substrate. The total clear aperture size
of the lens is 23.4 mm with a focal length 43 mm corresponding to
an f number of f /1.8 in the traditional sense. However, note that
the effective aperture which contributes the sharp intensity peaks
has a size of 8 mm yielding an effective f -number of f /5.4.
We note that the accuracy of the fabrication method is limited

by the turning tool which has a rounded tip with 16 µm radius,
prohibiting the reproduction of discontinuities in the profile. The
light loss and haze caused by this prototyping constraint accounts
for some artifacts we will observe in the experimental result section.
We discuss this limitation in depth in the supplementary document.

To validate the proposed approach experimentally, we use a Sony
A7 full-frame camera system with 6,000×4,000 pixels with a pixel
pitch of 5.96 µm, resulting in a diagonal FOV of 53◦. To collect
reference data on real scenes as comparisons, we use an off-the-shelf
well-corrected lens (Sony Zeiss 50 mm f /1.4 Lens). This compound
reference lens has been designed with more than a dozen refractive
optical elements tominimize aberrations for a large FOV. To evaluate
the proposed approach against alternative single-element designs,
we compare our lens against a single plano-convex aspherical lens
(Thorlabs AL2550G) with a focal length of 50 mm and a thickness
of 6 mm. In contrast to a spherical lens, this aspherical lens (ASP)
eliminates severe on-axis aberrations. Note that a (phase-wrapped)
diffractive Fresnel lens is equivalent to an ASP at one designated
wavelength, ignoring wrapping errors and fabrication errors. Hence,
we consider the ASP the state-of-the-art single lens alternative to
the proposed design.

8 ANALYSIS

8.1 Field of View Analysis
Figure 7 shows the spatial distribution of the aberrations and ex-
ample captures of a checkerboard target across the full sensor. Our
design balances the contrast detection probability [Geese et al. 2018]
(CDP) across the full field of view. CDP is a probabilistic measure
that allows us to characterize the ability of a higher-level processing
block to detect a given contrast between two reference points after
the full imaging chain.
We measure the local CDP of different measurement patches of

our lens and that of an aspherical lens, see Figure 7. The reference
points for this measurement are picked with 100% contrast between
local patches with a lateral distance of 3 σ , with σ being the full-
width-half-max (FWHM) of the peak mode of our PSF. This allows
us to characterize CDP for our dual-mixture PSF without needing to
vary the size of measurement patches. For our lens, a significant CDP
floor of almost 50% is preserved across the full FOV, ranging from
40% at on-axis angular direction to stay above 80% at the most tilted
angle. Since the PSF is not completely spatially invariant, the plot
exhibits a maximum around 0.5× half-FOV where the lens focuses
best. In contrast, the CDP of the aspherical lens drops drastically and
approaches 0% at view directions larger than 0.5× half-FOV. The
measurements agree well with our design goal that the sharp peak
of our dual-mixture PSF preserves high-frequency detail and local

Fig. 7. PSF behavior comparison (top) and corresponding checkerboard
capture comparison (bottom) between an off-the-shelf aspherical lens (ASP)
and our prototype lens. Bottom-left shows the side-by-side comparison
of the measurements of ASP and ours. Bottom-right shows the derived
distributions of contrast detection probability. The confidence interval is set
to 95% in both examples, refer to the original reference for details. Here we
use a plano-convex aspherical lens (Thorlabs AL2550G) as the comparison.

contrast required for the feature extraction blocks in deep network
models.

8.2 Generalization Analysis
The training data acquired using the proposed lab setup suffers from
mismatching spectrum and tone curve, non-uniformity, etc., when
compared to measurements in the wild. The most critical differences
are the limited dynamic range and fixed depth of field of the monitor.
Therefore, vanilla supervised learning using a per-pixel loss (i.e.
MAE or MSE) overfits to these non-uniformities, hence achieving
high quantitative results on a validation set displayed on the same
setup, but suffers from severe artefacts on a real-world test set. The
proposed semi-supervised adversarial loss, and the perceptual loss
achieve robustness to this “noise” in the training data for the given
approach. We validate the impact of these algorithmic components
visually in Figure 8 (in large off-axis regions), and quantitatively
against state-of-the-art recovery methods in Table 1.

Existing deconvolution methods recover the latent sharp images
to some degree but suffer from severe artefacts across the full FOV,
which manifests as noticeable haze and low contrast. The size and
scene-dependence of the aberrations of the proposed lens make it
extremely challenging for prior-based optimization algorithms to
recover fine detail and remove apparent haze.

To validate the proposedmethod against existing supervised train-
ing approaches, and assess the effect of the proposed loss functions,
we train a U-net with the same structure as that of our generator
on the lab-acquired data. Figure 8 and Table 1 show that vanilla
supervised training overfits to the dataset acquired from the lab
setup, which causes it to perform much better on captured data un-
der the same condition (validation dataset) but to fail on real-world
captures. In addition, we train pix2pix [Isola et al. 2017] as an ad-
versarial approach while enforcing an ℓ1 loss instead of perceptual
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Fig. 8. Comparison of off-axis image patches recovered using different reconstruction algorithms described in Table 1. The first row presents the displayed
validation from the test set of our learned reconstruction, while the remaining two rows present the data captured in the wild. Due to the mismatch of
spectrum, dynamic range, and depth of field, vanilla supervised learning using a per-pixel loss may show good quantitative results while suffer from severe
artefacts on real-world data. For these two examples, we present the image captured using an off-the-shelf compound lens (Sony Zeiss 50 mm f /1.4 Lens) as
the reference. Full images are shown in the supplementary document.

Table 1. Quantitative comparison of image recovery performance of the
10 mm lens for recent deconvolution methods, including non-blind cross-
channel deconvolution [Heide et al. 2016] (Cross), fully supervised U-net
recovery, U-net + GAN + ℓ1 loss (pix2pix), and our U-net + GAN + perceptual
loss. We assess PSNR, SSIM, and the perceptual loss component from our
model. The right-most column shows the ASP lens used in Figure 7 and
Figure 9 fine-tuned for our network. Note that the fully supervised U-net
in the third row does overfit to the lab display-capture setup and fails to
generalize to real capture scenarios.

Input Cross U-net pix2pix Ours ASP
PSNR 21.28 21.46 29.70 22.20 25.89 22.53
SSIM 0.79 0.73 0.91 0.77 0.86 0.84
Perceptual Loss 0.87 0.80 0.57 0.93 0.47 0.65

loss. By introducing this adversarial loss, the recovery performs bet-
ter on real world data but still suffers from non-trivial and visually
unpleasant artifacts, e.g. the high intensity sky and low intensity
ground in the patches. In other words, pix2pix is not robust enough
to resolve the mismatch of dynamic range and depth of field. By
introducing a perceptual loss rather than a per pixel loss in the
proposed method, our approach outperforms existing baselines for
real world experimental captures while preserving local contrast
and detail, that fits well with the scope of building consumer level
cameras.

8.3 Fine-tuning for Alternative Lens Designs
To validate the efficacy of the proposed lens design, we fine-tune
the described recovery method, using the same network, data and
training methodology, with an aspherical lens. Compared to this
alternative single-element design, the proposed design offers sub-
stantially improved sharpness in off-axis regions while trading off
on-axis sharpness, as shown in Figure 9. The significant improve-
ment in PSNR across full FOV, see last column of Table 1 and more
real captures in the supplement, validate that not only the recovery
algorithm is responsible for image quality but that our mixture PSF
design plays an essential role in proposed computational imaging
technique.

8.4 Hallucination Analysis
The evaluation and understanding of the robustness of deep net-
works is an active area of research. To analyze if the proposed
method hallucinates image content that is not present in the meas-
urements, we visualize the outliers with respect to perceptual and
SNR metrics on a held-out validation set with known ground truth.
Figure 10 plots the histograms of errors of image patches with
respect to ℓ1, ℓ2, and the discussed perceptual loss. We show the
outliers of these plots in the same figure. Other than suffering from
slight blur and color inaccuracy, our recovered results do not hal-
lucinate detail that is not present. Note that the presented image
patches are the outliers with the largest error values. As the histo-
gram mode is separated significantly from the presented outliers,
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Fig. 9. Comparison of different regions on images recovered using our learned image recovery algorithm from data captured by an off-the-shelf aspherical lens
(ASP) and our prototype lens. Although trading off on-axis sharpness in some sense, ours exhibits much better quality in off-axis regions. The lens parameters
and settings are the same as in Figure 7. The plots on the right reveal the averaged PSNRs of patches subject to FOV over 100 validation images. Note, in this
comparison we investigate only half of the full FOV of our design because the required resolution limits the FOV when using a consumer display monitor. We
observe that even within this intermediate range of FOV, the recovered image quality of ASP drops drastically when the investigated half-FOV goes beyond 7◦.

Fig. 10. Outlier analysis of reconstruction images of our deep network. For
each pair we show the recovered patch (left) and its corresponding ground
truth patch (right). The plots show the histograms of 9,600 evaluated image
patches under three error functions, ℓ1 loss, ℓ2 loss, and perceptual (VGG)
loss.

we conclude that the proposed reconstruction method is robust
and does not hallucinate major detail. Please see the supplemental
material for additional outlier visualizations.

9 EXPERIMENTAL ASSESSMENT
Dual-surface Design. We first show results for our dual-surface

thin-plate lens where both surfaces are configured as target depth
profiles to be optimized. The resulting optics layout and simulated
optical behavior are reviewed in the supplementary document. For
this design, to mitigate the possible pressure distortion because
of the hard contact turning fabrication, we use a plastic substrate
plate that has a thickness of 10 mm as a proof-of-concept. In mass

manufacturing, this substrate can be reduced to a thinner and more
solid structure using glass substrates.
The first two rows of Figure 11 show reconstructions of indoor

and outdoor scenes under both artificial illumination and natural
light. Our method successfully preserves both fine details and color
fidelity across full field-of-view. Note that all captures have been
obtained using a clear aperture setting, i.e. f /1.8, and a full sensor
resolution.

Single-surface Design. Next, we show results captured with a
single-surface thin-plate lens with only the rear surface machined.
The resulting optical layout and simulated optical behavior are
detailed in the supplementary document. For this design, we have
reduced the thickness of the substrate plate to 3 mm. The third row
of Figure 11 shows results for indoor and outdoor scenes captured
with this single-surface prototype.

9.1 Imaging over Large Depth Ranges and in Low Light
Figure 12 shows reconstruction results for scenes with large depth
ranges and in low-light scenarios. Although we only train the pro-
posed method with screen captures at a fixed distance, the pro-
posed method preserves the depth-dependent defocus, i.e., bokeh,
for scenes with large depth ranges. Careful readers notice that for
high-intensity regions, as in the sky, our reconstruction does not
recover detail. As outlined in Section 1, this is because the train-
ing data does not contain high-dynamic range captures for our
low-dynamic range LCD monitor setup.

In contrast to alternative flat optical designs with wide FOV, such
as pinholes with theoretically unlimited FOV, the proposed lens
design allows for low-light captures due to its f -number of f /5.4.
We demonstrate low-light and short-exposure imaging scenarios in
the second two rows of Figure 12, where we compare our design
against a pinhole (0.8 mm) that suppresses most aberrations over a
wide FOV at the cost of very limited light throughput. The pinhole
measurements are low-signal and hence corrupted with severe noise
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Fig. 11. Experimental results of dual-surface lens design (first two rows) and that of single surface lens design (third row) on real word scenes. For each pair,
we show the degraded measurement and the reconstruction result. The exposure time for these images are set 0.8, 125, 0.5, 1.25, 0.5, 0.4 ms with ISO 50. Refer
to supplementary document for more real world results.

that results in a poor reconstruction – even with state-of-the-art low-
light denoising methods [Chen et al. 2018]. Additional comparisons
at different exposure levels can be found in the supplement.

10 DISCUSSION AND CONCLUSION
We have demonstrated that it is viable to realize high-quality, large
field-of-view imaging with only a single thin-plate lens element. We
achieve this by designing deep Fresnel surface optics for a learned
image reconstruction algorithm.
Specifically, we introduce a compact thin-plate lens design with

a dual-mixture PSF distribution across the full FOV. Although the
PSF has an extremely large spot size of ≥ 900 pixels in diameter,
it preserves local contrast uniformly across the sensor plane. To
recover images from such degraded measurements, we learn a deep
generative model that maps captured blurry images to clean re-
constructed images. To this end, we propose an automated capture
method to acquire aligned training data. We tackle the mismatch

between lab-captured and natural images in the wild – prohibiting
vanilla supervised learning to perform well on real world scenes
– by introducing a combination of adversarial and perceptual loss
components. Together, the proposed network architecture, training
methodology, and data acquisition, allow us to achieve image qual-
ity that makes a significant step towards the quality of commercial
compound lens systems with just a single free-form lens. We have
validated the proposed approach experimentally on a wide variety
of challenging outdoor and indoor scenes.

While the proposed approach could enable high-quality imagery
with thin and inexpensive optics in the future, on today’s consumer
graphics hardware, the described reconstruction method is memory-
limited for models at full 24.3 Megapixel sensor resolution. There-
fore, we run the post-processing on the CPU which results in low
throughput on the order of minutes per image – far from that of
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Fig. 12. Experimental results of large depth range imaging (top row) and low-light imaging (bottom row). The exposure time and ISO for the top two examples
are set (3.125, 1) ms and ISO 50, while that for the bottom two examples are set (10 ms with ISO 500) and (20 ms with ISO 25,600).

modern image processing pipelines. The upcoming graphics hard-
ware generation will likely overcome this memory limitation. In the
meantime, a combination of cloud processing and low resolution or
tile-based previews could make the method practical. The lab data
acquisition is currently restricted by the dynamic range of consumer
displays, which we hope to overcome in the future with alternative
high-dynamic range display approaches.

Although our thin-plate lens design significantly reduces the form
factor compared to complex optical systems, we validate the concept
with a focal power and an aperture size comparable to existing DSLR
camera lenses. To achieve the envisioned camera device form factors,
a reduction in both size of the optical lens system and focal length
are necessary. Miniature lens systems with short back focal length
(e.g. ≤ 5 mm) are now possible by introducing metasurfaces or
injection molding techniques to fabricate the optics, which provide
feature sizes at the order of the wavelength of light and hence can
diffract light at steeper angles allowing for ultra-short focal lengths.
While we designed a single-element lens in this work, dual-

refractive lenses or hybrid refractive-diffractive optical systems
might be interesting directions for future research. Moreover, simple
optics for sensor arrays, such as the PiCam [Venkataraman et al.
2013], could be revisitedwith the proposed PSF design. Although this
work focuses on computational photography applications, we envi-
sion a wide range of applications across computer vision, robotics,
sensing and human-computer interaction, where large field-of-view
imaging with simple optics and domains-specific post-processing
could enable unprecedented device form factors.
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