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Abstract—Current LiDAR systems are limited in their ability to capture dense 3D point clouds. To overcome this challenge, deep
learning-based depth completion algorithms have been developed to inpaint missing depth guided by an RGB image. However, these
methods fail for low sampling rates. Here, we propose an adaptive sampling scheme for LiDAR systems that demonstrates
state-of-the-art performance for depth completion at low sampling rates. Our system is fully differentiable, allowing the sparse depth
sampling and the depth inpainting components to be trained end-to-end with an upstream task.
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1 INTRODUCTION

IMAGING systems using active illumination and time-
resolved detectors are able to make precise depth mea-

surements guided by their own light sources. This capabil-
ity of capturing 3D information is useful for applications
such as autonomous vehicle navigation [1], [2], remote
sensing [3], [4], [5], [6], [7], medical imaging [8], defense,
and robotics [9]. With advances in imaging hardware and
processing algorithms, light detection and ranging (LiDAR)
systems can capture depth images at extremely long range
[10], [11], [12], high speed [13], high resolution [14], or
minimal illumination power [15], [16], [17], [18], [19].

However, all active 3D imaging systems navigate a
trade-off between speed, resolution, and range to obtain
depth images without sacrificing accuracy. One way to
address this trade-off is through depth completion, where
dense depth is predicted from a sparse set of initial depth
samples and a single RGB image, alleviating the require-
ment for time-consuming, high-resolution scanning. Indeed,
recent techniques for depth completion have shown promis-
ing results [20]; however, performance typically degrades
sharply for fewer than hundreds of sampling locations.
Depth completion at very low sampling rates is inherently
difficult due to the undersampling of high frequency depth
details in the scene. While high frequency details can be
guessed or hallucinated by neural networks [21], [22], [23],
these reconstructions also degrade when few initial depth
samples are used.

We propose an imaging system which obtains dense
depth maps from an RGB image and sparse depth mea-
surements generated by a scene-adaptive scanning pattern
as shown in Figure 1. At the core of our method is a
deep network which can be trained end-to-end for depth
completion and adaptive sampling and which demonstrates
state-of-the-art performance at very low sampling densities.
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Fig. 1. LiDAR systems capture sparse 3D point clouds with high accu-
racy (bottom). A high-resolution RGB image (top) can be processed with
a monocular depth estimation algorithm to compute a dense depth map
of the scene (second row), but depth predictions from monocular images
contain inherent ambiguity and are often not accurate. We propose an
adaptive sampling method that is guided by the RGB image and a depth
completion network to resolve these ambiguities. Our method (third row)
computes dense depth maps with a significantly higher quality than
monocular depth estimators and it improves upon other depth sampling
strategies, especially at low sampling rates. RMSE for each dense depth
estimate is listed in millimeters.

While our depth completion technique performs well when



combined with standard scanning patterns (e.g. grid or
random samples), we show that exploiting adaptive sam-
pling further improves performance, especially at very low
sample rates.

Our method is partially motivated by improvements in
scanning LiDAR [24] and emerging optical phased array
imaging systems [25], [26]. These systems have the unique
capability of rapidly generating arbitrary scan patterns
and may facilitate implementation of adaptive sampling
algorithms in 3D imaging applications, including for au-
tonomous vehicles. With this work, we open the discussion
of adaptive sampling algorithms in end-to-end optimized
tasks, beginning with our application of depth completion.

The contributions of this paper are as follows:

• Inspired by the idea of depth completion and optical
phased arrays, we propose to generalize the task
of depth completion to also include the sampling
step and develop the first end-to-end system for
predicting sampling locations to best estimate dense
scene depth.

• We develop a neural network architecture and train-
ing method for determining optimal image sample
locations for a specific prediction task.

• We evaluate the proposed method in detail and
demonstrate the shortcomings of existing methods
on the NYU-Depth-v2 and KITTI datasets.

2 RELATED WORK

2.1 Depth estimation
In this section, we review work on depth estimation, com-
pletion, and interpolation and clarify their relationship to
our method.

Early methods in monocular depth estimation use hand-
crafted features [27] and graphical models [28] to map
monocular images to depth given a large repository of RGB-
depth data. Since the success of deep learning and con-
volutional neural networks (CNNs), these tools have been
used to directly learn a mapping from monocular images
to dense depth [29], [30], [31], [32], [33]. However, due to
ambiguity in the mapping of monocular images to depth,
these methods struggle producing exact depth estimates per
pixel, especially in terms of scale and bias.

The problem of interpolating sparse depth samples into
a dense depth image has also been explored. Prior methods
to solve this problem involved using compressed sensing
[34], [35] and deep learning [36]. Since many plausible
depth images could produce the same sparse samples, these
methods also have trouble interpolating sparse depth into a
dense depth image.

Depth completion combines these two tasks and uses
a monocular image and sparse depth samples to predict a
dense depth image. Early methods include work by Ferstl et
al. [37], where a low resolution depth map is refined using
high resolution monocular guidance or other work where
edge-aware inpainting methods are proposed for depth
images [38], [39]. The advent of deep learning brought upon
numerous CNN modifications and architectures designed to
predict dense depth [20], [21], [22], [23], [40], [41], [42], [43].
Still other methods have used bilateral filters and optimiza-
tion to solve the depth completion problem without relying

on large datasets to train deep learning models [44], [45]. All
of these works attempt to predict the dense depth map from
random sparse samples and monocular guidance without
any optimization optimal sample locations. Our adaptive
sampling method generalizes this depth completion task to
also include the choice of sampling location.

2.2 Adaptive sampling
Previous approaches for predicting sample locations pro-
posed sampling heuristics to capture pieces of the under-
lying signal. For images, furthest point sampling [46] was
proposed as a good heuristic to sample images for later
image reconstruction. More sophisticated heuristics predict
samples based on statistical information in regions of the
image [47], [48], [49] and come close to adaptive sampling,
but do not optimize sample locations for an upstream in-
ference task. The work in [48] applies adaptive sampling to
dense depth imaging, achieving impressive results using the
image gradients as a heuristic for sampling importance.

End-to-end optimization of a sampling mask for an
upstream task has been explored in X-ray fluorescence
imaging [50]. This work achieves good results by optimizing
a mask, and then clamping it to be binary at evaluation
time. However, the performance is demonstrated for a large
number of samples. Other work in end-to-end sample and
task optimization includes [51], however this work is in the
point cloud domain and optimizes sample locations assum-
ing that at train time we have access to the ground truth
information which we need to select the best descriptor
samples from.

We note that the problem statement of adaptive sam-
pling resembles that of active learning [52], where a learning
algorithm is able to interactively query information to obtain
desired outputs and new points. Active learning literature
such as that in [53], [54], [55], [56] focuses on heuristics and
data driven approaches to adaptively querying information
in order to improve the training of an algorithm. In contrast,
our adaptive sampling task desires to find optimal samples
for an estimation method at evaluation time.

3 SYSTEM

Our system is outlined in Figure 2. It takes as input an RGB
image, and outputs a reconstructed dense depth image. This
is done by algorithmically determining locations to sample
for depth from the RGB image, and then using these sparse
samples to reconstruct a dense depth image of the scene.
Each individual component of the system is described in
more detail below.

3.1 Preprocessing & depth completion
As described in Tables 1 and 2, we observe that many
state-of-the-art depth completion networks perform much
worse with a low number of sparse depth samples. Prior
work has shown that the traditional convolution kernels
used in CNNs are not well suited for sparse images [23],
[40]. Additionally, as seen in Figures 6 and 7, many depth
completion networks produce results which qualitatively
disregard the high frequency details in the depth image,
resulting in blurry depth maps which are correct in the



Depth Completion 
Network

RGB Image Monocular Depth Estimate Inpainted Sparse Depth Predicted Depth

Monocular Depth 
Estimation Network

Sampling Importance Vector Field Sparse Depth

Sampling Flow Field
Prediction Network

Bilateral
Filter

Fig. 2. Our adaptive sampling deep network takes as input an RGB image, and predicts optimal sampling pattern and reconstructed dense depth
from sampling at these locations. A pre-trained monocular depth estimation network is used to make an initial estimate of depth in the scene. A
U-Net is used to extract a sampling importance vector field, which is then integrated and used for sampling from the scene. Another U-Net is used
to fuse the coarsely inpainted sparse depth samples with the monocular depth estimate in order to predict the dense depth.

minimum MSE sense but do not reflect depth boundaries in
the scene. This is in contrast to monocular depth estimation
networks, which capture high frequency details in the depth
images and perform well up to a scale and bias factor using
only RGB images as guidance [33].

In order to address this observation, we propose prepro-
cessing the RGB data with a monocular depth estimation
network to predict a dense depth map from the input RGB
image. This is shown in Figure 2 as the monocular depth
estimation network. We also use a bilateral filter to roughly
inpaint the captured sparse depth image, shown in the bi-
lateral filter block of Figure 2. The roughly inpainted sparse
depth captures low frequency bias and scale details of the
scene in the depth domain, and the monocular depth esti-
mate captures high frequency details up to a scale and bias
factor. By avoiding the problematic sparse input images [23],
[40], we expect improved network performance in fusing
the two input images to produce the output depth map.
Additionally, since both inputs present features present in
the depth domain, we expect the neural network to have
an easier time learning a mapping to dense depth when
compared to other architectures which use RGB inputs.

Prior work has shown that deep learning with early
fusion of sparse depth with RGB and a bottleneck CNN
architecture (with an encoder and decoder) can produce
good results on the depth completion task [20], [41]. We thus
take this approach for our CNN architecture, with early fu-
sion of the monocular depth estimate and inpainted sparse
depth image. For NYU-Depth-v2 [57], we use a simple U-
Net [58] with 4 down-sampling and up-sampling layers,
each of which contains a convolution, batch normalization,
and ReLU. We modify the U-Net to also concatenate the
input to convolutional layer at each up-sampling. For KITTI
[59], we use the fusion network in [41], which is based
on ResNet-34 [60] and also has 4 down-sampling and up-
sampling residual blocks. This architecture is referred to as
the depth completion network in Figure 2.

Since our preprocessing and network inference steps
only rely on RGB and sparse depth inputs (the intermediate
monocular depth estimate is a direct function of the RGB
image), we can directly compare to existing state-of-the-art
depth completion methods on the KITTI and NYU-Depth-
v2 datasets. These steps can also be integrated into our

differentiable adaptive sampling system shown in Figure 2.

3.2 Sample prediction & differentiable sampling

From our experiments shown in Figure 3, we found that
Poisson-disc sampling of sparse depth measurements con-
sistently outperforms random sampling on the depth com-
pletion task. Poisson-disc sampling is implemented using
the method in [61], which produces a set of sampling points
which are tightly packed but no closer than a minimum dis-
tance r. This good performance is consistent with the claim
that sampling heuristics such as furthest point sampling [46]
perform well, as they aim to also produce a sampling mask
where sampling points are spread out as far as possible.
Because of this observation, we propose to achieve adaptive
sampling by starting with a grid of regularly spaced sample
points as a prior and then moving the points in order to
improve the dense depth prediction.

We implement adaptive sample prediction using a deep
neural network (U-Net with 4 down- and up-sampling
layers) which takes in the monocular depth estimate, and
outputs a sampling importance flow field. Using the vector
flow field allows the network to learn to move samples
from initial locations into areas of the image where the final
samples should be placed. Each of the initially placed grid
sampling locations integrates the vector flow field weighted
by proximity to it, where the weights are a Gaussian func-
tion of distance. This is shown in Equation 1, where Vi,j is
the sampling importance vector at coordinate (i, j), H and
W are the spacing of initial grid samples in the vertical and
horizontal direction respectively, and G is a 2D Gaussian
function centered at (i, j) with a standard deviation of
( 23H, 2

3W ).

Vi,j =
i+H∑

u=i−H

j+W∑
v=j−W

G(u, v) · Vu,v (1)

The resulting vector from this summation dictates where
the initial grid sample moves to, resulting in a new sampling
pattern for the image.

We train the sampling importance flow field prediction
network by varying the number of the grid samples with
each iteration, in order to make the resulting flow field



prediction robust to the original grid sampling locations. As
a result, at test time, we can integrate this vector flow field
with an arbitrary sampling pattern in order to improve the
result of depth completion.

In order to train the sampling importance field predic-
tion network, we need a differentiable pipeline connecting
the location of the sparse samples to the output dense depth
image, which we can apply a loss to. We use the PyTorch [62]
implementation of differentiable image sampling, based on
that in [63], in order to differentiably relate the values of the
sparse points to the sampling locations. The differentiability
essentially comes from sampling the value at (i, j) with a
bilinear kernel, as shown in Equation 2 where Di,j is the
sampled depth value at (i, j), and I is the ground truth
depth image of dimension X × Y .

Di,j =
X∑

n=0

Y∑
m=0

In,m max(0, 1− |i− n|)max(0, 1− |j −m|)

(2)
With this formulation, gradients from the loss on our

depth completion network can be backpropagated into the
sampling locations of the points, which can be used to train
the sampling importance field prediction network. In the
case where (i, j) does not correspond to a pixel center, we
place the sampled value at the closest pixel center in D.

In a hardware implementation with trained models, we
can replace the differentiable image sampling step with any
depth sensor. As is the case in depth completion, we assume
that this depth sensor is aligned with our RGB image, for
example optically aligned by using a dichroic beamsplitter.
This allows us to fuse the adaptively sampled sparse depth
images captured with an aligned RGB image without having
to continuously re-align while adaptively sampling.

3.3 Loss functions & regularization
To encourage our network to include the high frequency
details contained in the monocular depth estimate d̂m and
the accurate absolute depth scale present in the inpainted
sparse depth, we apply a loss to the output depth image
which includes the MSE between the output depth map
and ground truth depth and SSIM between the output and
the monocular depth estimate. The intuitive goal of the
SSIM loss is to maintain the structural similarity to the
monocular depth estimate, but refine the absolute depth
scale to minimize the MSE between the predicted dense
depth and ground truth. Thus, our loss function on the
predicted image d̂, where dgt is the ground truth depth and
w1 and w2 are relative weighting terms between the two
losses, is:

Lprediction = w1 · ||dgt − d̂||2 + w2 · SSIM(d̂, d̂m). (3)

In order to use the grid based sampling as a prior,
we implement a regularization on the predicted sampling
importance flow field V which penalizes large vectors. This
intuitively corresponds to penalizing moving the samples
too far from their starting positions. With a weighting term
of r1, this regularization is given by:

Lfield = r1 · ||V ||2. (4)

Finally, in order to increase the stability of training, we
want to make sure that the vector field does not move
sampling locations out of the range of the image; as a sample
moves out of the range of the image, the differentiable
relationship between that sampling location and the result
is lost. In order to enforce this stability, we regularize each
sampling location S ∈ [−1, 1]2 in order to keep it closer to
the center of the image located at (0, 0). This regularization
is also weighted by a relative importance term r2.

Limage = r2 ·
∑
S

||S||2. (5)

The final loss is given by a sum of the output loss and
the regularization terms:

L = Lprediction + Lfield + Limage. (6)

3.4 Training method

Because our depth completion network relies on a prepro-
cessed RGB image as a monocular depth estimate, it is
necessary to train the monocular depth estimation network
independently before training any other component. After
training the monocular depth estimation network, the val-
ues of its parameters are frozen and the depth completion
network is trained using a random sampling pattern. Fi-
nally, with the pre-trained monocular depth estimation and
depth completion networks in place, the sampling impor-
tance flow field is trained jointly with the depth completion
network in an end-to-end fashion.

Note that for our training process, we must split the
dataset into thirds in order to ensure different data distribu-
tions for training each of the networks. This is because if one
of the pre-trained components were to over-fit to the train-
ing data, the generalizing performance of the component
being trained would suffer since it does not need to learn to
do anything to improve performance on the training data.
For example, a monocular depth estimation network which
is over-fit to the training data would prevent the refine-
ment network from learning anything, since the monocular
depth estimates would already be over-fit to those training
examples and performance increases could not be gained
from fusing information from the sparse depth. However,
at training time, this depth completion method would not
generalize well since the outputs of the monocular depth
estimator would not be as good. For NYU-Depth-v2, this is
done by splitting the number of scenes into thirds and then
using the images from these scenes to train each of the three
component networks. For KITTI, the dataset is simply split
equally into thirds and each third is used to train the three
component networks.

As previously mentioned, in order to increase the ro-
bustness of the sampling importance flow filed prediction
network to different amounts of samples, we vary the num-
ber and position of the initial grid samples to be moved in
training. This is done for every batch during training. At
evaluation time, we reduce the variation in the amount of
samples and location of the grid to stabilize performance
and achieve an expected value number of samples.



3.5 Implementation Details
For training data, we train our networks on the full KITTI
depth completion dataset and a subset of the NYU-Depth-
v2 dataset consisting of 50k images presented in [33]. For the
monocular depth estimation network, we use DenseDepth
[33] which has state-of-the-art performance in monocular
depth estimation. For the bilateral filter, we fit a U-Net to
the output of the fast bilateral solver [44] over the entirety
of our dataset. This is because backpropagation through
a deep neural network is faster than solving an inverse
problem for each forward and backward pass as is done
in the original fast bilateral solver paper. This bilateral
solver proxy network is independently trained using an
average of 512 sparse depth samples for KITTI and 50 sparse
depth samples for NYU-Depth-v2, and could in practice be
replaced with any bilateral solver implemented with deep
learning or any other method.

The monocular depth estimation networks were trained
with the default parameters listed in [33]. The depth com-
pletion networks with random sampling were trained with
a learning rate of 0.0003, batch size of 12, and loss function
parameters of w1 = 1, w2 = 0.5 for both the NYU-Depth-v2
and KITTI datasets. The sampling importance field predic-
tion network is trained using a learning rate of 10−5, and
loss function parameters of w1 = 1, w2 = 0, r1 = 100, and
r2 = 5 for NYU-Depth-v2 and r2 = 0 for KITTI.

In order to train the adaptive sampling networks, we
expect there to be a dense ground truth depth image to sam-
ple from, since in practice we would be directly measuring
these values from the scene. In the case of KITTI, however,
the ground truth depth images are not dense since they
are collected from a velodyne LiDAR. In order to combat
this, we inpaint these ground truth depth images with the
simple method presented in [45]. This gives us a plausible
ground truth depth map, which we then take as ground
truth in our reconstruction task. Since we only train our
network and evaluate it for accuracy on the sparse ground
truth points presented in the KITTI dataset, the validity of
this inpainting only comes into question when training the
sampling importance flow field.

We have published our models and implementation for
reproducing the results described in this paper 1.

4 EXPERIMENTS

4.1 Adaptive Sampling
We train our sampling importance flow field prediction
network using the method previously described, varying
the initial number of samples to be moved around according
the vector field. This is done for both the NYU-Depth-v2
and KITTI datasets. For evaluation, we place a set number
of samples in a grid-like formation, and use the vector flow
field integration in order to move them to regions of more
importance.

Tables 1 and 2 show that with adaptive sampling, we
improve upon our own network’s performance significantly.
We observe that at low sampling rates, the adaptive sam-
pling is able to outperform state-of-the-art depth completion
using random sampling. Figure 3 shows the improvement

1. https://github.com/alexanderbergman7/deep-adaptive-LiDAR
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Fig. 3. Performance of various sampling strategies with our depth com-
pletion network as we vary the number of samples. We see that there is
an exponential decrease in accuracy as depth becomes very sparse, but
because of this the difference in reconstruction quality between adaptive
sampling results and other sampling methods increases. A qualitative
example of our adaptive sampling method as samples increase is shown
in the two image columns.

of adaptive sampling over random sampling and Poisson-
disc sampling as the number of samples decrease. We chose
to report the comparison versus Poisson-disc sampling in-
stead of grid sampling due to having similar approximate
performance with a significantly lower variance. We also
observe that the quality of the predicted depth images does
not fall off too rapidly with decreasing number of samples
when using adaptive sampling. However, we observe that
choosing clever heuristics for sampling, such as Poisson-
disc sampling also creates greater increases in performance
as the number of samples becomes low. This is expected,
since at lower number of samples the choice of the sampling
locations becomes more important in order to capture all of
the information in the scene.

Figures 1, 4, and 5 show a qualitative comparison of the
various sampling strategies and the resulting reconstructed
image from each of these sampling methods for NYU-
Depth-v2 and KITTI images respectively. In Figure 4, we
observe that both Poisson-disc and adaptive sampling yield
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Fig. 4. Comparison of sampling strategies for NYU-Depth-v2. The top
row shows the RGB image and sampling masks, where random sam-
pling pattern is blue, furthest point sampling is green, and adaptive
sampling is red. The depth images are those which are reconstructed
using our refinement network and the associated sampling mask. RMSE
is measured in meters.

benefits in the qualitative appearance of the depth images.
In Figures 1 and 5, we see that for the KITTI dataset the
adaptive samples cluster in distant regions of the scene. This
behavior can be explained since the MSE loss function used
to train these predicted sampling locations heavily penalizes
large magnitude errors, and thus poor reconstructions in
regions with large depth values are especially costly. The
examples in Figure 5 show that the samples are dynamic
and adaptive to features in the RGB image: specifically
predicting which regions are distant and increasing the
sampling rate so as to improve reconstruction in these areas.
In Figure 1, the predicted depth greatly improves upon the
initial monocular depth image.

Qualitative comparisons of other depth completion
methods with our adaptive sampling method at low sam-
pling densities are seen in Figures 6 and 7. Here, we see that
at lower sampling densities our depth images still preserve
the high frequency boundaries of objects in the scene seen in
the RGB images. This preservation is not observed in other
depth completion methods, which blur the boundaries of
depth edges in the scene. This is qualitatively observed in
results on both the NYU-Depth-v2 and KITTI images.

The runtime on our compute cluster for the sampling
flow field prediction network is 36 milliseconds for KITTI
images and 11 milliseconds for NYU-Depth-v2 images.
When compared to the depth completion networks, which
take 38 milliseconds for images of either dataset, the adap-
tive sampling steps are not costly. With this minimal in-
crease in computational overhead for adaptive sampling,
this method could be used in time-sensitive imaging ap-
plications such as autonomous vehicle navigation.

#Samples Method RMSE MAE
200 Sparse-to-Dense [20] 0.257 0.161

CSPN [23] 0.169 0.085
NConv-CNN [21] 0.209 0.098
Ours (Random) 0.206 0.127
Ours (Poisson-disc) 0.207 0.136
Ours (Adaptive) 0.193 0.116

50 Sparse-to-Dense [20] 0.311 0.191
CSPN [23] 0.258 0.143
NConv-CNN [21] 0.395 0.231
Ours (Random) 0.274 0.177
Ours (Poisson-disc) 0.250 0.156
Ours (Adaptive) 0.233 0.138

TABLE 1
Depth completion results on the NYU-Depth-v2 validation dataset. Error
is measured in meters. We compare our method with both random and
adaptive sampling versus various other successful methods which have

published code, showing that our depth completion method with
random sampling is competitive with other methods and with adaptive

sampling out-performs all other methods at low sampling rates.

#Samples Method RMSE MAE
Velodyne (∼21400) Sparse-to-Dense (gd) [41] 861.0 252.9

Sparse-Depth-Completion [22] 909.7 243.5
NConv-CNN-L2 [21] 873.1 232.4
Ours (Random) 1017.2 358.0

512 Sparse-to-Dense (gd) [41] 1606.8 525.1
Sparse-Depth-Completion [22] 2276.8 683.5
NConv-CNN-L2 [21] 2379.6 829.0
Ours (Random) 1916.1 641.5
Ours (Poisson-disc) 1767.7 613.6
Ours (Adaptive) 1753.1 642.0

156 Sparse-to-Dense (gd) [41] 2060.9 728.4
Sparse-Depth-Completion [22] 3182.7 1287.3
NConv-CNN-L2 [21] 3521.9 1414.5
Ours (Random) 2401.9 856.1
Ours (Poisson-disc) 2187.3 814.6
Ours (Adaptive) 2048.0 757.1

TABLE 2
Depth completion results on KITTI validation dataset. Error is

measured in millimeters. We compare our method with Velodyne,
random and adaptive sampling versus the most successful methods on

the KITTI depth completion benchmark which have published code
(Velodyne is the raw LiDAR output). We see that at the low rates,

adaptive sampling performs better than any other method.

4.2 Depth Completion

We also evaluate our network on the NYU-Depth-v2 and
KITTI depth completion tasks. For this evaluation, the adap-
tive sampling method is replaced by generating random
sampling masks with a desired number of samples. The split
of data used to train the sampling flow field prediction net-
work is instead used to train the depth completion network.

Tables 1 and 2 show the performance of our network
on the depth completion task compared to published state-
of-the-art methods. We observe that even with random
sampling, our network performs better at low sampling
rates than many state-of-the-art methods at higher rates.
For example, [21] and [22] have performance within 100mm
of the top performing method for depth completion on the
KITTI benchmark, but do not perform as well in the low
sampling rate regime. This is because at lower numbers
of samples, it is especially important to leverage the high
quality ordinal depth obtained using monocular depth esti-
mation for sensor fusion with an image generated from the
sparse samples. The depth completion network in this case
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Fig. 5. Depth estimations and predicted sparse sampling patterns for the KITTI validation dataset. The left column contains RGB image and ground
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can be viewed as a network which passes the high frequency
components in the depth image obtained by the monocular
depth estimate, but passes the low frequency scale and
bias components present in the bilaterally inpainted sparse
depth image.

5 DISCUSSION

The end-to-end trainable adaptive sampling method dis-
played in this paper both quantitative and qualitatively
shows improvement over random sampling and simple
heuristics such as the Poisson-disc sampling method. We
believe that further improvement on the adaptive sampling
task in depth completion is limited by the following chal-
lenges.

First, optimizing sampling locations for depth comple-
tion is a fundamentally non-differentiable problem, which
we get around by using bilinear sampling kernels to dif-
ferentiably relate the sampling location and value of the
sparse depth sample. The gradients backpropagated into
the sampling location only reflect change in output with
respect to the sparse depth value at that location, and not
the actual coordinate location of the sparse depth sample in
the image. This mismatch is especially apparent when the
gradients are backpropagated through a very sparse number
of points in the image. Our method shows that we can
achieve success with this incomplete gradient information,
but perhaps more accurate and stable adaptive sampling

can arise from a better differentiable sampling method for
the depth completion task.

Second, depth completion implemented with deep neu-
ral networks may not utilize information from samples in
the way that we intuitively expect. It is possible that the
mapping deep neural networks learn from RGB and sparse
depth to dense depth is more invariant to the locations of
the sparse samples than the human visual system is when
obtaining information about a scene. This could help explain
Figure 3, where simple sampling heuristics perform quite
well in the depth completion task. Our method shows that
with these deep learning depth completion architectures,
we can still improve our dense depth reconstructions using
adaptive sampling, but a challenge for further improvement
may be a redesign of the method for the upstream task
which makes better use of distinct information from sam-
ples.

6 CONCLUSION

The method of adaptive sampling opens a new direction of
research for developing imaging systems which are capable
of actively determining where to sample and performing
some inference task with these samples in an end-to-end
optimized method. In this work, we present this imaging
system. We apply this idea to the task of depth completion,
where we generalize the task of predicting a dense depth
image from RGB and sparse samples to predicting a dense



RGB Image Sparse-to-Dense RMSE: 2174.8 Sparse-Depth-Completion RMSE: 4353.0

GT Depth NConv-CNN RMSE: 3386.0 Ours (Adaptive) RMSE: 2143.2

RGB Image Sparse-to-Dense RMSE: 2163.5 Sparse-Depth-Completion RMSE: 3349.5

GT Depth NConv-CNN RMSE: 3806.2 Ours (Adaptive) RMSE: 2543.6

RGB Image Sparse-to-Dense RMSE: 4744.9 Sparse-Depth-Completion RMSE: 6803.4

RGB Image Sparse-to-Dense RMSE: 2573.3 Sparse-Depth-Completion RMSE: 3061.8

GT Depth NConv-CNN RMSE: 6359.5 Ours (Adapive) RMSE: 4289.3

GT Depth NConv-CNN RMSE: 3529.2 Ours (Adaptive) RMSE: 1691.1

Fig. 6. Comparison of depth completion networks on the KITTI dataset with our adaptive sampling method. Left column has aligned RGB images
and ground truth depth maps, the right two columns are a comparison of various depth completion methods [21], [22], [41]. These results were
obtained with an average of 156 samples per image, and RMSE is measured in millimeters. We see that even in the second example (rows 3 and
4), where [41] performs better than our result in the MSE sense, our method still does a better job of capturing high frequency depth features such
as the depth of the billboard.

depth image given an RGB image and a capacity to sample
the scene.

Such a system in the depth completion task has the
capability to overcome the trade-off between speed, res-
olution, and range in obtaining depth images by being
implemented using new optical phased array hardware.
We foresee this technology becoming commonplace in the
future for applications in autonomous vehicles, remote sens-
ing, medical imaging, defense, and robotics, where the end
goal of building systems which adaptively sample and infer
properties of their surroundings are the next logical steps.
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