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S1.  LCT Resampling 

 Here, we provide a derivation for the LCT resampler 𝑇 ∗ 

introduced in Section 3.1 of the main paper. Recapitulating 

that the forward confocal model [1] is given by 

 𝜏(𝑥′, 𝑦′, 𝑡) = ∭dΩ  𝜌(𝑥, 𝑦, 𝑧)𝑟4
Ω

 

(S1) 

 ⋅ 𝛿(2√(𝑥′ − 𝑥)2 + (𝑦′ − 𝑦)2 + 𝑧2 − 𝑡𝑐), 

the objective of the LCT is to convert (S1) to a convolution 

equation using a suitable reparameterizer (in the continuous 

case) or a resampler (in the discrete case). 

 Absorbing 1 𝑟4⁄ = (2 𝑡𝑐⁄ )4 into the definition 𝜏 , and then 

reparameterizing the 𝑡-𝑧 axis using the change of variables 

 𝑧 =

√𝑢
2

, 
d𝑧
d𝑢 =

1

2
√𝑢 ,  𝑡 =

√𝑢′

𝑐 , 
d𝑡
d𝑢′

=
1𝑐√𝑢′

, (S2) 

one can rewrite (S1) as the convolution 

1𝑐√𝑢′
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√𝑢′
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∗ [' ]((′,*′,+′)

= ∭dΩ 
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2
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√𝑢
2
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(S3) 

⋅ 𝛿(4(𝑥′ − 𝑥)2 + 4(𝑦′ − 𝑦)2 − (𝑢′ − 𝑢))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ℎ((′−(,*′−*,+′−+)

, 

noting that 𝒯∗ is a linear operator. Operator 𝑇 ∗ in (4) can be 

seen as the discrete counterpart of 𝒯∗, and 𝐻, a filter whose 

impulse response is obtained by sampling ℎ(⋅).  
S2. D-LCT Resampling 

 In the case of the D-LCT, the definition of the resampling 

operator is different from that used by the LCT. Re D-LCT 

aims to express the directional-albedo model 

 𝜏(𝑥′, 𝑦′, 𝑡) = ∭d𝑠 〈𝛖(𝑠), 𝐬′ − 𝐬〉𝑟5
Ω

   
(S4) 

 ⋅ 𝛿(2√(𝑥′ − 𝑥)2 + (𝑦′ − 𝑦)2 + 𝑧2 − 𝑡𝑐), 

as a sum of convolutions. Absorbing 1 𝑟5⁄ = (2 𝑡𝑐⁄ )5 in the 

definition of 𝜏  and unwrapping 〈𝛖(𝑠), 𝐬′ − 𝐬〉 produces 

 𝜏(𝑥′, 𝑦′, 𝑡) = ∭dΩ 𝜐((𝑥, 𝑦, 𝑧)𝛿(⋅)(𝑥 − 𝑥′)
Ω

   

(S5) 
 

+  ∭dΩ 𝜐*(𝑥, 𝑦, 𝑧)𝛿(⋅)(𝑦 − 𝑦′)
Ω

   

 
+  ∭dΩ 𝜐0(𝑥, 𝑦, 𝑧)𝛿(⋅)(𝑧)

Ω

   

in which 𝛿(⋅) denotes the last term in the integral of (S1). 

 Applying the LCT (S3) to the three integrals, we obtain  

 𝒯1
∗[𝜏 ](𝑥′, 𝑦′, 𝑢′) = ∭dΩ 𝒯(

∗ [𝜐(](𝑥, 𝑦, 𝑢)ℎ((⋅)
Ω

 

(S6) 
 

+  ∭dΩ 𝒯*
∗ [𝜐*](𝑥, 𝑦, 𝑢)ℎ*(⋅)

Ω

 

 
+  ∭dΩ 𝒯0 

∗ [𝜐0  ](𝑥, 𝑦, 𝑢)ℎ0(⋅)
Ω

 

in which the resampling operators 

 𝒯(
∗ [𝜐(](𝑥, 𝑦, 𝑢) = (1 2

√𝑢⁄ )𝜐((𝑥, 𝑦,
√𝑢 2⁄ ) 

(S7)  𝒯*
∗ [𝜐*](𝑥, 𝑦, 𝑢) = (1 2

√𝑢⁄ )𝜐((𝑥, 𝑦,
√𝑢 2⁄ ) 

 𝒯0 
∗ [𝜐0] (𝑥, 𝑦, 𝑢) = (1 4⁄ )𝜐0(𝑥, 𝑦,

√𝑢 2⁄ ), 
and note the 𝒯(

∗  and 𝒯*
∗  are identical to the LCT resampling  

operator 𝒯∗, while 𝒯0
∗  differs due to the presence of 𝑧 in the 

last integral of (S5). We have also denoted by 

 ℎ((⋅) = ℎ(𝑥′ − 𝑥, 𝑦′ − 𝑦, 𝑢′ − 𝑢)(𝑥 − 𝑥′) 

(S8)  ℎ* (⋅) = ℎ(𝑥′ − 𝑥, 𝑦′ − 𝑦, 𝑢′ − 𝑢)(𝑦 − 𝑦′) 

 ℎ0 (⋅) = ℎ(𝑥′ − 𝑥, 𝑦′ − 𝑦, 𝑢′ − 𝑢) 

the three, shift-invariant D-LCT operators (filters) in (S6). 

S3. Model Linearization 

 Here, we show the directional-albedo model corresponds 

to the linearization of a physically-based, higher-order light 

transport model. We can express the confocal version of the 
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physical model proposed by Tsai et al. [2] as 

 𝜏(𝑥′, 𝑦′, 𝑡) = ∭ dΩ  𝜌(𝐬)𝑟4
⟨ 𝐧(𝑠), 𝐬′ − 𝐬‖𝐬′ − 𝐬‖⟩

2

⏟⏟⏟⏟⏟⏟⏟
4(5(6),6′−6)

Ω

   

(S9) 

 ⋅ 𝛿(2√(𝑥′ − 𝑥)2 + (𝑦′ − 𝑦)2 + 𝑧2 − 𝑡𝑐), 

in which the squaring of the inner product takes into account 

the cosine fall-offs due to both the incident and the reflected 

rays at 𝐬 = (𝑥, 𝑦, 𝑧).  
 Due to the squaring of the dot product in (S9), recovering 𝑛(𝑠) requires solving a nonlinear least-squares problem. We 

can apply the Gauss-Newton method to solve this nonlinear 

least-squares problem iteratively, by successively linearizing 

the term 𝑓(𝐧(𝐬), 𝐬′ − 𝐬) as  

 𝑓 (̂𝐧(𝐬), 𝐬′ − 𝐬) = 𝑎(𝐬) ⟨ 𝐧(𝐬), 𝐬′ − 𝐬‖𝐬′ − 𝐬‖⟩ + 𝑏(𝐬), (S10) 

in which 𝑎(𝑠) and 𝑏(𝑠) are respectively the slope and offset 

parameters of each linearized model. Observe that both 𝐧(𝐬) 
and (𝐬′ − 𝐬)/‖𝐬′ − 𝐬‖ are unit vectors, so that linearizations 𝑓 (̂𝐧(𝐬), 𝐬′ − 𝐬) depend only on the angle between 𝐧(𝐬) and 𝐬′ − 𝐬 about which the linear approximations are formed. 

 Our object is to derive a linearized model in terms of the 

directional albedos 𝛖(𝐬) = 𝜌(𝐬)𝐧(𝐬). Substituting the linear 

term 𝑓 (̂𝐧(𝐬), 𝐬′ − 𝐬) in (S9) and using the bilinearity of dot 

products, we can write the linearized model associated with 

the 𝑘 + 1th iteration of Gauss-Newton as 𝜏(𝑥′, 𝑦′, 𝑡) 
 

= ∭(𝑎7(𝑠) ⟨ 𝛖(𝐬)𝑟4
,

𝐬′ − 𝐬‖𝐬′ − 𝐬‖⟩ − 𝑏7(𝐬)𝜌7(𝐬))
Ω

 
(S11) 

 ⋅ 𝛿(2√(𝑥′ − 𝑥)2 + (𝑦′ − 𝑦)2 + 𝑧2 − 𝑡𝑐) dΩ, 

in which 

 𝑎7(𝐬) = 2 ⟨𝐧7(𝐬), 𝐬′ − 𝐬‖𝐬′ − 𝐬‖⟩, 

(S12) 

 𝑏7(𝐬)  = − ⟨𝐧7(𝐬), 𝐬′ − 𝐬‖𝐬′ − 𝐬‖⟩
2

, 

and 𝐧7(𝐬) and 𝜌7(𝐬) are respectively the normal and albedo 

at 𝐬 estimated during the 𝑘th iteration. Figure S1 (left) plots 

the linearization of 𝑓(𝐧(𝐬), 𝐬′ − 𝐬) at different values of the 

incident angle 𝑤 between 𝐧7(𝐬) and 𝐬′ − 𝐬. 

 In the first iteration (𝑘 = 0) of Gauss-Newton, we do not 

have the previous estimate 𝜌−1 of the albedo. Rerefore, we 

require a linearization 𝑓 (̂𝐧(𝐬), 𝐬′ − 𝐬) that does not involve 

the offset 𝑏(𝐬). Constraining 𝑏(𝐬) = 0 for all 𝐬, and using the 

fact that (S9) is invariant to a constant scaling of the normal 𝐧(𝐬), we can choose 

 𝑎(𝐬) = 1,  𝑏(𝐬) = 0 (S13) 

for all 𝐬, from which we obtain (5) and consequently (8). In 

Figure S1 (right), we plot the offset-constrained linearization 𝑓0̂(𝑤) of 𝑓(𝑤). Flatness can be more prominent for scenes 

that are further away from the relay wall since the light rays 

are almost collinear, providing less directional information 

in the transients, as seen with Discobolus in Figure S2. 

S4. =resholding and Masking 

Having thus obtained the 3D volume of directional albedo 𝛖 = (𝛖(, 𝛖*, 𝛖0) ∈ ℝ: 3×3, we generate foreground mask as 𝐦 = 𝛖0 > 𝛼 max(𝛖0) ∈ ℝ: 3

. Using the threshold 𝛼 = 0.2 

gives us good masks in practice. Re masked directional- 

𝑤 

𝑓(𝑤) 

𝑓 ̂7 (𝑤
) 

𝑓(𝑤
) 

𝑤 

𝑓 ̂0 (𝑤) 

Figure S1. Square cosine fall-off 𝒇(𝒘) and its linearizations. We 

denote by 𝑤, the angle between the surface normal 𝑛
!
(𝑠) at point 𝑠 

and the incident ray (𝐬′ − 𝐬) ‖𝐬′ − 𝐬‖⁄  from 𝐬′ to 𝐬. We show in the 

left subplot the first-order Taylor approximation of 𝑓(𝑤). @e right 

subplot shows the initial linearization where we constrain the off-

set parameter 𝑏
0

= 0. 
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 Bunny Serapis Discobolus 

Figure S2. Albedo and surface reconstructions using captured data: @e extracted normals (c) are used to fit surfaces (d). SU has a spatial 

resolution of 64 × 64 pixels (1min exposure), and the remaining scenes, 512 × 512 (180min exposure). We use 𝜆 = 20, 23 and 23 for SU, 
Discobolus and Dragon, respectively. Parameters of the other methods were optimized using grid search. 
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albedo is 𝐦𝛖 = (𝐦𝛖(, 𝐦𝛖*, 𝐦𝛖0). Ris is similar to the 

procedure of Tsai et al. [2]. For simulations, the ground truth 

masks 𝐦 ∈ ℝ=>  are two-dimensional binary images, so we 

first replicate 𝐦 along the depth dimension. 

S5. Additional Results 

 We provide a more extensive set of experimental results 

for comparison with various baselines. We show the surface 

reconstructions from different viewpoints in Figure S2. We 

show in Figure S3, the albedo and surface reconstructions 

produced by a number of  methods: the light-cone transform 

[1], 𝑓–𝑘 migration [3], phasor fields [4], Tsai et al. [2], and 

Fermat flow [5].  
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 LCT [1] 𝑓–𝑘 [3] Phasor fields [4] Tsai et al. [2] Fermat flow [5] D-LCT surface 

Figure S3. Albedo and surface reconstructions using captured data: @e extracted normals (c) are used to fit surfaces (d). SU has a spatial 

resolution of 64 × 64 pixels (1min exposure), and the remaining scenes, 512 × 512 (180min exposure). We use 𝜆 = 20, 23 and 23 for SU, 
Discobolus and Dragon, respectively. Parameters of the other methods were optimized using grid search. 


