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Diffractive achromats (DAs) promise ultra-thin and light-weight form factors for full-color computational imaging
systems. However, designing DAs with the optimal optical transfer function (OTF) distribution suitable for image
reconstruction algorithms has been a difficult challenge. Emerging end-to-end optimization paradigms of diffractive
optics and processing algorithms have achieved impressive results, but these approaches require immense computational
resources and solve non-convex inverse problems with millions of parameters. Here, we propose a learned rotational
symmetric DA design using a concentric ring decomposition that reduces the computational complexity and memory
requirements by one order of magnitude compared with conventional end-to-end optimization procedures, which
simplifies the optimization significantly. With this approach, we realize the joint learning of a DA with an aperture size
of 8 mm and an image recovery neural network, i.e., Res-Unet, in an end-to-end manner across the full visible spectrum
(429–699 nm). The peak signal-to-noise ratio of the recovered images of our learned DA is 1.3 dB higher than that of
DAs designed by conventional sequential approaches. This is because the learned DA exhibits higher amplitudes of the
OTF at high frequencies over the full spectrum. We fabricate the learned DA using imprinting lithography. Experiments
show that it resolves both fine details and color fidelity of diverse real-world scenes under natural illumination. The
proposed design paradigm paves the way for incorporating DAs for thinner, lighter, and more compact full-spectrum
imaging systems. ©2020Optical Society of America under the terms of theOSAOpen Access Publishing Agreement
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1. INTRODUCTION

High-quality imaging with reduced optical complexity has drawn
much interest in both academic and industrial research and devel-
opment [1,2]. Accordingly, computational imaging, in which
much of the aberration correction is shifted from optics to post-
processing algorithms [3–8], has been intensively investigated.
A detailed review of the use of recent deep learning advances in
computational imaging can be found in Ref. [9]. Similarly, the
complexity of optics can be further simplified by introducing
diffractive optical elements (DOEs) [10–15]. Their advan-
tages of compact form factor, a large and flexible design space,
and relatively good off-axis imaging behavior are highly valu-
able. Integrating diffractive optics [16–19] or even metasurfaces
[20,21] in computational imaging has led to many ultra-thin and
lightweight camera designs.

Full-spectrum imaging, ubiquitous in the modern sensor sys-
tem, was traditionally thought too difficult to be realized using
single DOEs because their inherently strong chromatic aberrations
could lead to very low amplitudes of the optical transfer function

(OTF) at almost all wavelengths. Recently, pioneering works
using a sequential design approach have been attempted to realize
high-quality full-spectrum imaging with optimized DOE [22,23].
In these, a diffractive achromat (DA) is first designed by enforcing
the DOE to produce the desired nearly uniform intensity distri-
bution at the focal plane for each wavelength and then removing
the wavelength-invariant residual aberrations (WIRAs) via a sub-
sequent image processing step. This sequential design pipeline
provides much better full-spectrum imaging quality than that of
conventional DOEs (e.g., Fresnel lenses). This is because miti-
gating the chromatic aberration improves the amplitudes of their
OTFs over the full spectrum. However, it may not be the optimal
design paradigm from the perspective of computational imaging.

Notably, the optimal OTF distribution of DOEs for full-
spectrum computational imaging remains unclear. For sequential
design approaches, the desired optimization target may not be the
optimal. The ambiguity and complexity of the resulting WIRAs
may drastically increase for a DA with a large aperture and a
number of achromatic wavelengths [12]. These factors often lead
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to a sub-optimal DA and further result in image recovery algo-
rithms failing to resolve a high-fidelity image (e.g., loss of details or
occurrence of artifacts).

On the other hand, emerging end-to-end design approaches
[24–28] that can jointly design the optics and image processing
subject to application-domain-specific imaging tasks may provide
a better design paradigm for full-spectrum computational imaging
using DOEs. The elimination of chromatic aberrations and the
resulting WIRAs can be comprehensively tackled through the
end-to-end framework. That being said, the resulting WIRAs can
certainly adapt well to the utilized image recovery algorithm, and
higher full-spectrum image quality can be achieved without the
prior knowledge of the optimal OTF distribution.

However, designing practical DAs that have an aperture size
of several millimeters, a focal length of several tens of millimeters,
and several tens of numbers of achromatic wavelengths has not
be achieved using the end-to-end design framework due to the
non-trivial computational memory requirement and complex
non-convex optimization. Leveraging a rotationally symmetric
model can partially solve this problem [29], but existing work
uses the rotational symmetry only to reduce the complexity of the
non-convex optimization problem while memory requirements
remain exorbitant. For instance, the required memory is approxi-
mately 20 GB for the forward and backward propagation of a DA
with an aperture size of 8 mm over 29 wavelengths [22], which is
impractical for most consumer-level GPUs today. Accordingly,
state-of-the-art DOE considers only small aperture sized DAs
with three wavelengths [24], which is insufficient to guarantee
high-fidelity full-spectrum imaging because of the metamerism
problem [22], when coupled with RGB sensors.

In this work, we seek to overcome the challenging requirements
in computational and memory complexity of end-to-end opti-
mization paradigms and apply it to learn a DA for high-fidelity
full-spectrum imaging. Specifically, a rotationally symmetric
imaging model is proposed with concentric ring decomposition.
This novel rotationally symmetric imaging model, in tandem
with an energy regularization term, contributes to reducing the
memory consumption and simplifying the non-convex optimiza-
tion. Further, a deep neural network, i.e., Res-Unet, is applied as
the image recovery module, offering the powerful capability of
resolving high-fidelity information. We demonstrate our proposed
end-to-end designed DA imaging both in simulation and on proto-
type lenses over the full visible spectrum. In addition, we reveal that
the optimal OTF distribution of DOEs for full-spectrum com-
putational imaging is the one exhibiting high amplitudes at high
frequencies over the full spectrum as much as possible.

2. END-TO-END LEARNING OF DIFFRACTIVE
ACHROMAT AND IMAGE RECOVERY

The proposed end-to-end paradigm jointly learns the parameters
of the optics and image recovery algorithm by building a differ-
entiable pipeline architecture consisting of an imaging model,
image recovery neural network, and loss, as shown in Fig. 1.
Existing end-to-end frameworks suffer from the bottleneck of
substantial computational memory requirements and complex
non-convex optimization due to two key features: First, the two-
dimensional calculation of the point spread function (PSF) of
DOEs in their imaging model results in massive computational
complexity. Second, the size of the PSF of DOEs is always very

large, leading to a large modeled sensor size. In the following, we
overcome this bottleneck by introducing the rotationally symmet-
ric parameterization with concentric ring decomposition to the
imaging model and an energy regularization in the loss function.
Then, we describe the image recovery neural network and an
implementation example.

A. Rotationally Symmetric Imaging Model with
Concentric Ring Decomposition

The imaging model consists of generating PSFs of the DA and
simulating the captured images with these PSFs. Without loss
of generality, we assume that the PSF of a DOE is nearly shift
invariant within a limited field of view (FOV), which means that
on-axis aberration is the dominating factor that degrades the imag-
ing quality. We observe the insight that the ideal shape for a lens,
i.e., without on-axis aberration, is inherently rotationally sym-
metric. Accordingly, we derive a rotationally symmetric imaging
model, which drastically simplifies the computational memory
requirement and complexity of the non-convex optimization. This
is achieved by decomposing the rotationally symmetric DOE to a
1D sum of series of circ functions, in which each individual PSF
can be represented by the 1D first-order Bessel function of the
first kind.

According to the scalar diffraction theory [30], the on-axis PSF
PSF(x , y , λ) of a DA in Cartesian coordinates is given as

PSF(x , y , λ)=
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where (s , t) and (x , y ) are the spatial coordinates at the DA
and the sensor (or image) planes, respectively, f is the distance
between the lens and the sensor, which is equivalent to the
focal length of the lens when the object point is far away, and
P (s , t, λ)= A(s , t)e ik(n(λ)−1)h(s ,t) is the complex transmittance
function of the DA. λ is the wavelength, k = 2π

λ
is the wave num-

ber, n(λ) is the refractive index of the substrate, h(s , t) is the height
map of the DA, and A(s , t) is a circ function that represents the
aperture of DA.

Using Eq. (1) directly can lead to high computational complex-
ity, e.g., the optimization and calculation grids are∼16 million in
size for the PSF simulation of a DA with an aperture diameter of
8 mm and a feature size of 2µm. This inevitably leads to substantial
memory consumption and optimization difficulties. Reducing the
calculation dimension can simplify the computational complexity.
Existing end-to-end frameworks have used an unconstrained
height map of the DOE, which makes the reduction in calculation
dimension unfeasible, as shown in Fig. 2(a).

Instead, as shown in Fig. 2(b), by applying the rotationally sym-
metric parameterization on the height map of DA, we reduce the
number of optimization parameters to 1D and further simplify the
complexity of the non-convex optimization. Still, the PSF is com-
puted in 2D. Considering that a practical rotationally symmetric
DA should be discretized as a number of concentric rings with a
width d , we decompose P (s , t, λ) and the additional phase term

e
ik
2 f (s

2
+t2) to a 1D sum of series of circ functions [see Fig. 2(c)],

expressed as
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Fig. 1. Overview of proposed end-to-end learning. The parameters of the diffractive achromat (DA) and image recovery algorithm are learned jointly
using the end-to-end optimization paradigm. In each forward pass, the spectrally varying scene is convolved with the spectrally varying PSFs of the rotation-
ally symmetric parametrized DA. Then, Gaussian noise is added to the simulated sensor image after integrating over the color response of the RGB sensor
for each channel. A neural network, e.g., a Res-Unet consisting of two base network units, is applied as the image recovery unit to resolve a high-fidelity color
image. Finally, a differentiable loss, such as the mean squared error for the ground truth image, is defined on the recovered image. An extra energy regulari-
zation is added to force light rays to hit within the designated sensor area. In the backward pass, the error is backpropagated to the learned parameters of the
image recovery network and height profile of the DA.
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Fig. 2. Principle illustration of the rotationally symmetric imaging
model. (a) DOE parameterization in traditional 2D manners is used as a
reference. (b) The dimension of optimization parameters can be shrunk
to 1D by applying the rotationally symmetric parameterization. (c) The
complex transmittance function of the rotationally symmetric DOE is
superimposed with a sequence of discrete concentric rings, that can be
further decomposed to a 1D sum of series of circ functions. Each PSF
of circ function can be represented by the 1D order Bessel function of
the first kind. Using this rotationally symmetric imaging model, the
calculation dimension of PSFs and that of optimization parameters can
both be reduced to 1D.

where r =
√

s 2 + t2, rm =md ,m = 1, 2, . . ., and circ is the unit
circ function. For brevity, we derive this in polar coordinates. The
approximation of Eq. (2) is reasonable when the ring sampling d
is sufficiently fine to accurately approximate the additional phase

term e
ik
2 f r 2

by e
ik
2 f r 2

m , for instance, d ≤ λ
2NA [12], where NA is the

numerical number of the DA.
Then, by substituting Eq. (2) into Eq. (1), the rotationally sym-

metric PSF model of discretized DOEs is derived as follows:
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λ f , and H(rm, ρ) is defined as
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where J1 is the first-order Bessel function of the first kind. Please
refer to Supplement 1 for derivation details. Note that H(rm, ρ)

can be pre-calculated, and then Eq. (3) can be implemented by
single vector-matrix multiplications.

We note that alternative parameterization models, such as the
circularly symmetric truncated Zernike base [31], may not work
appropriately for end-to-end designs of a DOE lens considering its
continuous surface representation. Please refer to Supplement 1 for
a detailed evaluation using the Zernike base representation.

Finally, the dimension of the PSF is restored by sweeping the
PSF(ρ, λ) around the optical axis of the DA. Then, the images
Yc (x , y ) captured by the DA and sensor can be simulated as
follows:

Yc (x , y )=
∫ λmax
λmin
[P S F (x , y , λ) ∗ I (x , y , λ)]Rc (λ)dλ+ η,

(5)
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where [λmin, λmax] is the spectrum range, and η is the sensor read
noise (Gaussian noiseη∼N (0, σ 2)).

Again, this rotationally symmetric imaging model simplifies
the calculation of PSFs from 2D to 1D, which reduces the memory
consumption and computational complexity by an order of mag-
nitude. As such, for the first time, we can fit a larger lens model (i.e.,
larger pixel counts and more wavelengths) to commercial GPUs.
Akin to conventional rotationally symmetric designs, our approach
also leads to a more robust optimization of DAs by reducing the
number of variables, e.g., for the design shown in Section 2.D, the
number of variables is reduced from 16,000,000 to 2000.

B. Loss with Energy Regularization

The outer diameter of the PSF of the DA is determined by its
feature size, focal length, and wavelength. For instance, at the
wavelength of 550 nm, the PSF diameter goes up to 13.75 mm
(calculated by λ f

d ) when the DA feature size and its focal length are
2 µm and 50 mm, respectively. That said, the modeled sensor size
in the design space should be larger than 13.75 mm to guarantee
accurate modeling of the PSF. However, this results in large-sized
patches of the input data (e.g., larger than 2,292× 2,292 when
the sensor pixel size is set to 6 µm), and inevitably increases the
memory consumption, thereby further hindering the optimization
from being implemented on commercial GPUs.

We introduce an energy regularization term, forcing most of
the light rays to hit the designated sensor area. This setting allows
us to use a relatively small sensor size for saving device memory.
This small sensor size may cause a severe deviation of the synthetic
forward imaging pass in Fig. 1 from the realistic forward imaging
pass. However, the energy regularization contributes to bridging
this gap. Specifically, we penalize a regularization term R(PSF)
that calculates the energy of light rays missing the designated sensor
area, which is defined as

R(PSF)=
∫ λmax

λmin

∫∫
W(x , y )PSF(x , y , λ)dxdy dλ, (6)

where W(x , y ) is a selecting mask for indexing those pixels that fall
outside the modeled sensor area by setting the pixel value to one,
and otherwise to zero.

The loss function of the proposed framework combines this
energy regularization as well as the `2 (mean squared error) loss,
which evaluate the errors between the recovery and original ground
truth [our approach can also generalize to alternative data fidelity
losses, such as `1 loss or structural similarity index (SSIM) loss],
expressed as

L=
∑

c

||G̃ c (x , y )− G c (x , y )||22 + αR(PSF), (7)

where α is the regularization weight, G̃ c is the output of Res-Unet,
and G c is the ground truth RGB image determined by the RGB
spectral response curve, Rc (λ), of the sensor, represented as

G c (x , y )=
∫ λmax

λmin

I (x , y , λ)Rc (λ)dλ. (8)

We evaluate the energy-preserving behavior with and without
the energy regularization under the design parameters shown
in Section 2.D. As shown in Fig. 3, although the PSF is slightly
sharper without the energy regularization, a considerable amount

Fig. 3. PSFs of the DA designed with and without energy regulariza-
tion. We present the cross section of the 2D PSFs that are normalized to
the input energy.

of energy falls outside the designated sensor area (only ∼6% is
measured by the designated sensor). This would result in an ill-
conditioned end-to-end optimization problem because of the
severely truncated PSFs used in the forward imaging pass. In con-
trast, the energy of the averaged PSF falling within the designated
sensor area increased to∼76% after adding the energy regulariza-
tion. This observation agrees well with our argument above that
the energy regularization contributes to bridging the gap between
the synthetic and realistic forward imaging pass.

Note that adding the energy regularization term and using
the rotationally symmetric imaging model, the memory con-
sumption reduces from ∼20GB to ∼2GB for the forward and
backward propagation of a DA with an aperture size of 8 mm over
31 wavelengths.

C. Image Recovery Neural Network

To offer the powerful capability of resolving high-fidelity informa-
tion from the measurements degraded by the WIRAs of the DA
and the sensor noise, and inspired by the recent success of deep
image recovery networks [7,32–35], we develop a residual-Unet
(Res-Unet) based on the original Unet [36], which implements the
multi-scale operation on the image, and Res-net [37], which can
extend the network to a much deeper architecture for augmenting
performance. Incorporating these two networks imparts several
advantages. First, it performs a multi-scale operation on the image
because of the contracting and expanding paths, making it suitable
for the image recovery of scenarios where large blur occurs; second,
it learns the residual image, i.e., the difference between the sharp
latent image and the measurement, instead of learning the original
sharp image itself, making the optimization of the network easier;
third, it scales to a deeper and more robust architecture by directly
extending the network with a base unit of the Res-Unet.

The architecture of the base unit of the Res-Unet is presented
in the bottom right corner of Fig. 1, where in our current imple-
mentation, two base units are applied. In relevant work, two
consecutive U-net blocks can also be referred as W-net [38]. The
first block of the unit consists of a convolution layer with 32 kernels
of a 3× 3 matrix. Each of the second to sixth blocks of the unit
consists of a convolution layer with 32 kernels of a 4× 4 matrix,
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and a stride of two for the downsampling; we double the number
of kernels at each downsampling convolution. Each of the sev-
enth to eleventh blocks of the unit consists of a nearest neighbor
upsampling and a 3× 3 convolution layer. Moreover, we concat-
enate the outputs from the downsampling layer to introduce high
frequencies to preserve fine scene details. A final convolution layer
with three kernels of a 3× 3 matrix is used to make the residual
output size equal to the original image size. The residual image
is added to the sensor output, and through a clamp layer, which
keeps the final output data between zero and one. All blocks but the
last one include a leaky rectified linear unit (L-ReLU with slope=
0.2) as the activation function. Please refer to Supplement 1 for the
configuration details.

D. Implementation Example

We implement our proposed framework with TensorFlow [39]
and optimize with stochastic gradient methods. The optimization
variables include the rotationally symmetric height profile, h(r ),
and the parameters of the convolutional kernels of the Res-Unet.
The feature size and focal length of the DA, and the sensor pixel
size and read noise level are hyper-parameters. We experimentally
observe that the Adam optimizer works appropriately for this joint
design framework.

Specifically, we design an achromatic diffractive lens with a
focal length of 50 mm and an aperture diameter of 8 mm. The fea-
ture size of the DOE is set to 2 µm, corresponding to a total pixel
number in the design of 4000× 4000. The achromatic spectrum
range is from 429 to 699 nm. The material of the designed DOE is
NOA61.

The dataset used for training is built on the datasets made
public by Harvard [40], ICVL [41], CAVE [41], and NUS [42].
We have a total of 376 hyperspectral images. Among them, 15
images are used as the test set, while the remaining 361 images are
for training. We have 361 iterations in one epoch. In each iteration
of the training epochs, we sequentially read in one hyperspectral
image and randomly crop it into patches, each with a pixel count
of 512× 512. Then, we randomly flip and rotate all patches to
augment the training process.

To contribute to a relatively smooth surface profile for a robust
fabrication process using grayscale photolithography, we intro-
duce a filtering process into the optimization framework to locally
smooth the height profile. Specifically, we extract the height pro-
file after 10 epochs, and implement the median filtering with a
kernel size of five on the current height profile. Then, we feed the
filtered height profile back and continue the training process.
In our current training implementation, this filtering process is
re-implemented every 10 epochs. We also add a random uniform
noise distribution in the range±20 nm to the height profile before
computing the PSF to augment the robustness of fabrication
imperfections.

We model the sensor with a pixel count of 512× 512 and a
pixel size of 6 µm. The sensor read noise is Gaussian noise with a
standard deviation drawn from a uniform distribution between
0.001 and 0.015 (with an image scale of [0,1]). Each hyperspectral
image contains 31 channels representing the range from 429 to
699 nm with an interval of 9 nm. The regularization weight, α, is
set to 1e-4. The height profile of the DOE is initialized to 10 nm
at the beginning of the optimization. We use a learning rate of
10−4 with the Adam optimizer. The optimization phase is run for
215 epochs, which takes approximately 18 h on a single NVIDIA

1080Ti GPU. We experimentally observe that using the `2 loss
leads to better results, e.g., in higher peak signal-to-noise ratio
(PSNR), than `1 loss and SSIM loss in our case. Please refer to
Supplement 1 for more details.

3. ASSESSMENT IN SIMULATION

We first assess the final imaging performance of three diffractive
lenses: (1) a conventional Fresnel lens that focuses light at a single
wavelength (555 nm), which is used as the baseline of regular
DOEs showing strong chromatic aberration; (2) a reference DA
with the same design parameters as in Section 2.D, designed in a
conventional sequential manner following the scheme described
in a prior work [22]; and (3) the proposed DA designed using our
end-to-end paradigm.

For a fair comparison, we use the same training set and param-
eters to train the image recovery Res-Unets for the Fresnel lens and
the reference DAs. We assess 15 test images using the objective
criteria of the PSNR, SSIM, and spectral angular mapper (SAM)
[43]. Generally, a higher PSNR, a higher SSIM, or a lower SAM,
indicates a closer agreement between the recovered images and
ground truth data. Gaussian noise with σ = 0.003 is added to
all sensor measurements. Table 1 summarizes the average PSNR,
SSIM, and SAM, and Fig. 4 shows several examples selected from
the test set. We observe that the Fresnel lens exhibits significantly
worse performance than ours in PSNR, SSIM, SAM, and visual
performance, as shown in Fig. 4. Concerning the reference DA,
although the performance is much better than that of the Fresnel
lens in both spatial and spectral quality (with averaged PSNR and
SAM improvements of 6 dB and 0.04, respectively), it resolves
fewer details [see Fig. 4(a)] and suffers from more artifacts [see
Fig. 4(b)] than that of our end-to-end designed DA. The averaged
PSNR, SSIM, and SAM of the reference DA are= 1.3 dB, 0.015,
and 0.01, respectively, lower than those of the proposed one. As
such, we demonstrate that the proposed end-to-end optimization
framework can lead to superior results when deriving DAs for
full-spectrum applications. Results with noise levels σ = 0.006
andσ = 0.011 are presented in Supplement 1.

To explore why the end-to-end design leads to better results
than that of conventional sequential methods, we assess the focus-
ing behavior of two DAs. The result of a Fresnel lens is also shown
as the reference. Figures 5(a), 5(d), and 5(g) show a stack of the
focused light intensity profiles of a Fresnel lens, the proposed DA,
and the reference DA, respectively. A Fresnel lens can focus only
one single wavelength at the designed focal distance. However,
both DAs have the identical focal plane at all 31 designed wave-
lengths, showing the achromatic behavior over the full spectrum
We also show five selected PSFs derived subject to the spectrum
of different color targets in Figs. 5(b), 5(e), and 5(h). We observe
three insights: (1) the Fresnel lens suffers from strong chromatic
aberration; (2) the WIRAs are inevitable when aiming to mitigate
the chromatic aberration of DOEs; and (3) the WIRAs vary subject
to design methods.

Next, to further investigate why the WIRAs of the proposed
DA are optimal for the subsequent image recovery algorithms and
what is the optimal OTF distribution for full-spectrum compu-
tational imaging with DOEs, we explore the OTF of the three
lenses in Figs. 5(c), 5(f ), and 5(i). We observe that the amplitudes
of the OTF of the Fresnel lens at high frequencies are pretty low
(∼0.0005) at most wavelengths. Instead, the amplitudes of the
OTF of the reference and proposed DAs at high frequencies are
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Table 1. Quantitative Evaluation of Averaged PSNR (dB), SSIM, and SAM over 15 Test Images Resolved Using
Different Lens Designs and Recovery Algorithms

Lens Design Fresnel Lens Reference DA Proposed DA

Measurement 19.43/0.645/0.17 19.80/0.662/0.15 19.90/0.657/0.14
Recovery 25.78/0.804/0.12 31.79/0.877/0.08 33.09/0.892/0.07

Fig. 4. Selected examples of the assessment of the DA designs in simulation. We assess the performance of a conventional Fresnel lens, a reference DA,
and a DA optimized using the proposed framework. We show both the original sensor measurements and the recovery results of the Res-Unet. The inset val-
ues indicate the PSNR (dB) and SSIM.

∼0.01 and ∼0.025, respectively. This observation suggests that
the amplitude of the OTF at high frequencies matters, concerning
improving the performance of diffractive full-spectrum computa-
tional imaging. Intuitively, the higher the amplitude of the OTF
in high-frequency range, the higher quality of the recovery image.
Although the sequential design manner has already led to a higher

amplitude of the OTF at high frequencies than that of a Fresnel
lens, the resulting DA design is often sub-optimal. This is because
the amplitudes of OTFs of specified target PSFs are always lower at
high frequencies than those at low and mid frequencies. As such,
the non-convex optimization may fail to enforce an increase of
the amplitude of the OTF at high frequencies, especially for cases
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Fig. 5. Simulated performance of a Fresnel lens and two DAs. For each design, we show a stack of the focused light intensity profiles (a), (d), (g) along the
optical axis at multiple wavelengths, where the white dashed line indicates the focal plane, and the scale bar corresponds to 200 µm. We also show the sim-
ulated sensor measurements and the normalized PSFs (b), (e), (h) of selected scene points. The normalized PSFs are shown in log scale for visualization pur-
pose. In addition, we show the OTFs of three lenses (c), (f ), (i) at 31 design wavelengths, respectively. The black dashed line shows the averaged OTF of the
31 design wavelengths.

where the complexity of WIRAs is notable. However, via enforc-
ing the joint optimization, the design space is comprehensively
explored with the consideration of final image quality. As such, the
WIRAs can adapt to the specific image recovery algorithm and lead
to higher amplitudes of the OTF at high frequencies.

4. EXPERIMENTAL RESULTS

A. Prototype

The designed DOEs are fabricated using imprinting lithogra-
phy [44]. Please refer to Supplement 1 for the details. Figure 6(a)
illustrates a microscopy image of the fabricated DOE.

The fabricated lens was then attached to a Canon T5i DSLR
camera body with 5, 740× 3, 648 pixels and a pixel pitch of
4.1µm. To account for deviations between the designed and fabri-
cated DA, we used a white LED light source with a 35 µm pinhole
attached in front to calibrate the real-world PSFs of our DA, as
shown in Fig. 6(b). The measured PSFs exhibit a slight deviation
from the designed ones due to the imperfect fabrication (with a
mean square error of 0.07 for the image scale of [0,1]). A fine-tune
of the image recovery network with the measured PSF can mitigate
the influence of fabrication error. Please refer to Supplement 1 for
elaborated analysis.

B. Full Field-of-View Imaging Behavior

Our proposed DA exhibits visually identical on-axis and off-axis
performances. As illustrated in Fig. 7(a), the checkerboard is
degraded uniformly within the full FOV of 18.6◦, demonstrating

the assumption that the PSF of the DA is FOV independent. After
a post-processing step using the Res-Unet, the entire checkerboard
is resolved. We use the modulation transfer function (MTF), one

Fig. 6. Measurement of the proposed DA: (a) microscopy image of
the fabricated DA (scale bar indicates 0.5 mm); (b) designed and mea-
sured PSFs with a Canon T5i DSLR camera body (scale bar indicates
60 µm); and (c) cross section of the PSFs of (b). The PSFs shown here are
gamma-corrected for visualization purpose.
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Fig. 7. Evaluation of full field-of-view (FOV) imaging behavior:
(a) degraded and recovered checkerboard image pair and (b) MTFs
estimated from the grayscale slant edges inside (a); on-axis and off-axis
represent the 0◦ and 17.5◦ FOVs, respectively.

of the representative metrics in optical designs, and estimate it on
the recovered image using the slant edge method [45], as presented
in Fig. 7(b). Although in computational imaging, defining MTFs
in a conventional manner is not the optimal metric to evaluate
spatial resolution, still these plots intuitively reveal the full FOV
imaging behavior. We observe a reasonable compromise between
the on-axis and off-axis performances as well as an MTF larger
than 0.1 at the normalized frequency of 0.35 (corresponding to
85 l p/mm).

C. Captured Results

The experimental results captured using our DA are shown in
Fig. 8, presenting diverse real-world scenes including indoor,

outdoor, large reflection feature, and rich color, under both arti-
ficial illumination and natural light. The results show that our
method successfully preserves both fine details and color fidel-
ity. It is clear that our DA combined with the Res-Unet is able to
perform high-fidelity full-spectrum imaging. We note that the
color of the checkerboard scene deviates from that of a standard
checkerboard. It is mainly because this image is displayed on an
LCD monitor whose color gamut may deviate from the natural
color gamut. More results captured by another machine vision
sensor (Pointgrey Grasshopper3 USB3) can be found in Fig. S3
(Supplement 1), indicating that the fabricated DA is achromatic
due to its robustness to different spectral response curves of the
sensors.

5. CONCLUSION

We have presented a memory-efficient end-to-end design
paradigm for full-spectrum computational imaging with diffrac-
tive optics. This is achieved by deriving a novel rotationally
symmetric PSF model and incorporating the energy regularization
in the loss function. Superior high-fidelity imaging performance
has been realized by jointly learning a DA and an image recovery
neural network. The design paradigm maximizes the amplitudes
of OTF at high frequencies over the full spectrum and inherently
seeks the optimal solution via comprehensively tackling both
chromatic aberration and WIRAs. As such, we have demonstrated
realistic DA imaging with a large pixel count (e.g., 4000× 4000),
multi-wavelength channels (e.g., 31), and a sophisticated deep
neural network (e.g., Res-Unet). We envision our method to

Fig. 8. Experimental results of the fabricated DA. For each pair, we show the degraded sensor measurement and the recovery result. The exposure times
for these images are 2.5, 125, 76, 600, 25, and 600 ms (respectively, from left to right, top to bottom) at ISO 100. The images are center-cropped regions
(3, 000× 2, 000) of the original camera measurement. The processing time at this image size on an NVIDIA 1080Ti GPU is around 4 s.
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lay a foundation for enabling DAs for thinner, lighter, and more
compact full-spectrum cameras, and additionally establish the
potential of extending compact computational cameras with
DOEs to widespread applications such as single-shot depth imag-
ing, high-dynamic-range imaging, and other high-level vision
tasks.

Funding. National Natural Science Foundation of China
(61925504, 61621001); Special development fund for Shanghai
Zhangjiang National Independent Innovation Zone (ZJ2019-
ZD-003); National Key Research and Development Program
of China (2016YFA0200900, 2016YFA0200901); Major
projects of Science and Technology Commission of Shanghai
(17JC1400800); Shu Guang project supported by Shanghai
Municipal Education Commission and Shanghai Education
(17SG22); Fundamental Research Funds for the Central
Universities; National Science Foundation CAREER Award
(1839974, 1553333); PECASE by the Army Research Laboratory;
National Science Foundation (ECCS-1542152).

Disclosures. The authors declare no conflicts of interest.

See Supplement 1 for supporting content.

REFERENCES
1. D. L. Marks, D. R. Golish, D. J. Brady, D. S. Kittle, E. J. Tremblay, E. M.

Vera, S. S. Hui, J. E. Ford, J. Kim, and M. E. Gehm, “Gigapixel imag-
ing with the aware multiscale camera,” Opt. Photon. News 23(12), 31
(2012).

2. K. Venkataraman, L. Dan, A. Mcmahon, G. Molina, P. Chatterjee, R.
Mullis, and S. Nayar, “PiCam: an ultra-thin high performance monolithic
camera array,” ACM Trans. Graph. 32, 1–13 (2013).

3. F. Heide, M. Rouf, M. B. Hullin, B. Labitzke, W. Heidrich, and A.
Kolb, “High-quality computational imaging through simple lenses,”
ACM Trans. Graph. 32, 149 (2013).

4. N. Antipa, G. Kuo, R. Heckel, B. Mildenhall, E. Bostan, R. Ng, and L.
Waller, “DiffuserCam: lensless single-exposure 3D imaging,” Optica 5,
1–9 (2018).

5. M. S. Asif, A. Ayremlou, A. Veeraraghavan, R. Baraniuk, and A.
Sankaranarayanan, “Flatcam: replacing lenses with masks and com-
putation,” in IEEE International Conference on Computer Vision (ICCV)
(2015), pp. 663–666.

6. A. Sinha, J. Lee, S. Li, and G. Barbastathis, “Lensless computational
imaging through deep learning,” Optica 4, 1117–1125 (2017).

7. Y. Peng, Q. Sun, X. Dun, G. Wetzstein, and W. Heidrich, “Learned large
field-of-view imaging with thin-plate optics,” ACM Trans. Graph. 38, 219
(2019).

8. K. Monakhova, J. Yurtsever, G. Kuo, N. Antipa, K. Yanny, and L. Waller,
“Learned reconstructions for practical mask-based lensless imaging,”
Opt. Express 27, 28075–28090 (2019).

9. G. Barbastathis, A. Ozcan, and G. Situ, “On the use of deep learning for
computational imaging,” Optica 6, 921–943 (2019).

10. P. R. Gill and D. G. Stork, “Lensless ultra-miniature imagers using odd-
symmetry spiral phase gratings,” in Imaging and Applied Optics (2013),
paper CW4C.3.

11. S. Banerji and B. Sensale-Rodriguez, “A computational design frame-
work for efficient, fabrication error-tolerant, planar THz diffractive optical
elements,” Sci. Rep. 9, 5801 (2019).

12. S. Banerji, M.Meem, A.Majumder, F. G. Vasquez, B. Sensale-Rodriguez,
and R. Menon, “Imaging with flat optics: metalenses or diffractive
lenses?” Optica 6, 805–810 (2019).

13. M. Meem, S. Banerji, C. Pies, T. Oberbiermann, A. Majumder, B.
Sensale-Rodriguez, and R. Menon, “Large-area, high-numerical-
aperture multi-level diffractive lens via inverse design,” Optica 7,
252–253 (2020).

14. S. Banerji, M. Meem, A. Majumder, B. Sensale-Rodriguez, and R.
Menon, “Extreme-depth-of-focus imaging with a flat lens,” Optica 7,
214–217 (2020).

15. P. Wang, N. Mohammad, and R. Menon, “Chromatic aberration cor-
rected diffractive lenses for ultra broadband focusing,” Sci. Rep. 6,
21545 (2016).

16. Y. Peng, Q. Fu, H. Amata, S. Su, F. Heide, and W. Heidrich,
“Computational imaging using lightweight diffractive-refractive optics,”
Opt. Express 23, 31393–31407 (2015).

17. F. Heide, Q. Fu, Y. Peng, andW. Heidrich, “Encoded diffractive optics for
full-spectrum computational imaging,” Sci. Rep. 6, 33543 (2016).

18. D. S. Jeon, S.-H. Baek, S. Yi, Q. Fu, X. Dun, W. Heidrich, and M. H. Kim,
“Compact snapshot hyperspectral imaging with diffracted rotation,”
ACM Trans. Graph. 38, 117 (2019).

19. Y. Peng, X. Dun, Q. Sun, F. Heide, and W. Heidrich, “Focal sweep imag-
ing with multi-focal diffractive optics,” in IEEE International Conference
on Computational Photography (ICCP) (2018), pp. 1–8.

20. S. Colburn, A. Zhan, and A. Majumdar, “Metasurface optics for full-color
computational imaging,” Sci. Adv. 4, eaar2114 (2018).

21. S. Colburn, A. Zhan, and A. Majumdar, “Varifocal zoom imaging with
large area focal length adjustable metalenses,” Optica 5, 825–831
(2018).

22. Y. Peng, F. Qiang, F. Heide, and W. Heidrich, “The diffractive achromat
full spectrum computational imaging with diffractive optics,” ACMTrans.
Graph. 35, 31 (2016).

23. N. Mohammad,M.Meem, B. Shen, P.Wang, and R.Menon, “Broadband
imaging with one planar diffractive lens,” Sci. Rep. 8, 2799 (2018).

24. V. Sitzmann, S. Diamond, Y. Peng, X. Dun, S. Boyd, W. Heidrich, F.
Heide, and G. Wetzstein, “End-to-end optimization of optics and image
processing for achromatic extended depth of field and super-resolution
imaging,” ACM Trans. Graph. 37, 1–13 (2018).

25. J. Chang and G. Wetzstein, “Deep optics for monocular depth esti-
mation and 3D object detection,” in IEEE International Conference
on Computer Vision and Pattern Recognition (CVPR) (2019),
pp. 10193–10202.

26. Y. Wu, V. Boominathan, H. Chen, A. Sankaranarayanan, and A.
Veeraraghavan, “PhaseCam3D—learning phase masks for passive
single view depth estimation,” in IEEE International Conference on
Computational Photography (ICCP) (2019), pp. 1–12.

27. C. A. Metzler, H. Ikoma, Y. Peng, and G. Wetzstein, “Deep optics
for single-shot high-dynamic-range imaging,” in IEEE International
Conference onComputer Vision and Pattern Recognition (CVPR) (2020).

28. J. Chang, V. Sitzmann, X. Dun, W. Heidrich, and G. Wetzstein, “Hybrid
optical-electronic convolutional neural networks with optimized
diffractive optics for image classification,” Sci. Rep. 8, 12324 (2018).

29. H. Haim, S. Elmalem, R. Giryes, A. M. Bronstein, and E. Marom, “Depth
estimation from a single image using deep learned phase coded mask,”
IEEE Trans. Comput. Imaging 4, 298–310 (2018).

30. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company,
2005).

31. Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, “Optimal
point spread function design for 3D imaging,” Phys. Rev. Lett. 113,
133902 (2014).

32. K. He, X. Zhang, S. Ren, J. Sun, B. Leibe, J. Matas, N. Sebe, and M.
Welling, “Identity mappings in deep residual networks,” in European
Conference on Computer Vision (ECCV) (2016), pp. 630–645.

33. K. Zhang, W. Zuo, S. Gu, and L. Zhang, “Learning deep CNN denoiser
prior for image restoration,” in IEEE International Conference
on Computer Vision and Pattern Recognition (CVPR) (2017),
pp. 3929–3938.

34. S. Elmalem, R. Giryes, and E. Marom, “Learned phase coded aper-
ture for the benefit of depth of field extension,” Opt. Express 26,
15316–15331 (2018).

35. S. Nah, T. Hyun Kim, and K. Mu Lee, “Deep multi-scale convolutional
neural network for dynamic scene deblurring,” in IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR) (2017),
pp. 3883–3891.

36. O. Ronneberger, P. Fischer, T. Brox, N. Navab, J. Hornegger, W.
M. Wells, and A. F. Frangi, “U-net: convolutional networks for bio-
medical image segmentation,” in Medical Image Computing and
Computer-Assisted Intervention (MICCAI) (2015), pp. 234–241.

37. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR) (2016), pp. 770–778.

https://doi.org/10.6084/m9.figshare.12588728
https://doi.org/10.1364/OPN.23.12.000031
https://doi.org/10.1145/2508363.2508390
https://doi.org/10.1145/2516971.2516974
https://doi.org/10.1364/OPTICA.5.000001
https://doi.org/10.1364/OPTICA.4.001117
https://doi.org/10.1145/3355089.3356526
https://doi.org/10.1364/OE.27.028075
https://doi.org/10.1364/OPTICA.6.000921
https://doi.org/10.1038/s41598-019-42243-5
https://doi.org/10.1364/OPTICA.6.000805
https://doi.org/10.1364/OPTICA.388697
https://doi.org/10.1364/OPTICA.384164
https://doi.org/10.1038/srep21545
https://doi.org/10.1364/OE.23.031393
https://doi.org/10.1038/srep33543
https://doi.org/10.1145/3306346.3322946
https://doi.org/10.1126/sciadv.aar2114
https://doi.org/10.1364/OPTICA.5.000825
https://doi.org/10.1145/2992138.2992145-4
https://doi.org/10.1145/2992138.2992145-4
https://doi.org/10.1038/s41598-018-21169-4
https://doi.org/10.1145/3197517.3201333
https://doi.org/10.1038/s41598-018-30619-y
https://doi.org/10.1109/TCI.2018.2849326
https://doi.org/10.1103/PhysRevLett.113.133902
https://doi.org/10.1364/OE.26.015316


Research Article Vol. 7, No. 8 / August 2020 / Optica 922

38. X. Xia and B. Kulis, “W-net: a deep model for fully unsupervised image
segmentation,” arXiv preprint arXiv:1711.08506 (2017).

39. Google, “TensorFlow: large-scale machine learning on heterogeneous
systems,” 2015, https://tensorflow.org.

40. A. Chakrabarti and T. Zickler, “Statistics of real-world hyperspectral
images,” in IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR) (2011), pp. 193–200.

41. F. Yasuma, T. Mitsunaga, D. Iso, and S. Nayar, “Generalized assorted
pixel camera: post-capture control of resolution, dynamic range and
spectrum,” Technical Report CUCS-061-08 (Columbia University,
2008).

42. R. M. Nguyen, D. K. Prasad, and M. S. Brown, “Training-based spectral
reconstruction from a single RGB image,” in European Conference on
Computer Vision (ECCV) (2014), pp. 186–201.

43. F. A. Kruse, A. B. Lefkoff, J. W. Boardman, K. B. Heidebrecht, A. T.
Shapiro, P. J. Barloon, and A. F. H. Goetz, “The spectral image process-
ing system (SIPS)-interactive visualization and analysis of imaging
spectrometer data,” Remote. Sens. Environ. 44, 145–163 (1993).

44. Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci.
28, 153–184 (1998).

45. E. Samei, M. J. Flynn, and D. A. Reimann, “A method for measuring the
presampled MTF of digital radiographic systems using an edge test
device,” Med. Phys. 25, 102–113 (1998).

https://tensorflow.org
https://doi.org/10.1016/0034-4257(93)90013-N
https://doi.org/10.1146/annurev.matsci.28.1.153
https://doi.org/10.1118/1.598165

