
Neural Sensors: Learning Pixel Exposures for
HDR Imaging and Video Compressive Sensing

with Programmable Sensors

–Supplemental Material–
Julien N. P. Martel, Member, IEEE, and L. K. Müller, and S. J. Carey, and P. Dudek, Senior Member, IEEE ,

and G. Wetzstein Senior Member, IEEE

F

1 DETAILS ABOUT THE TRAINING OF THE DEEP
NETWORK ARCHITECTURES

1.1 Datasets
HDR : We use 297 high quality high-dynamic range

images from HDRi Haven1 downloaded at a resolution of
2048 × 1024px. The training set comprises 269 randomly
sampled images (without replacement), and the testing set
comprises the 28 remaining images.

For all the training experiments using 2D U-Nets, a
training sample is produced as follows: an image is chosen
at random from the 269 training images. First it is converted
to grayscale. Then, a scale s ∼ U([0.25, 0.40]) is uniformly
sampled, to rescale the high-quality high-resolution HDR
image. Note that the minimum scaling factor of 0.25 is
chosen so that 0.25 × 1024 is equal to the image sizes we
consider of side length 256. Finally, a random crop of size
256× 256 is performed on the rescaled image. The obtained
256×256 image is then randomly vertically and horizontally
flipped, as well as rotated.

High-speed: We use the 100 video clips provided in
the Need For Speed (NfS) dataset2 in their 240FPS version.
Those are converted to grayscale. The training set comprises
90 randomly sampled video clips (without replacement),
and the testing set comprises the 10 remaining ones. Note,
that in principle a low frame rate video dataset could also be
used, as long as, the interframe discrepancy is not too high.
A low-frame rate video with slow motion is seen the same
by our method than a high-frame rate video with higher
discrepancy since the networks do not have a real notion
of time else than through the concatenation of successive
frames.

For all the training experiments with 3D U-Nets, a video-
block used as a training sample is produced as follows:
A 256 × 256 × N (with N the number of slots of the
shutter function) video-block is extracted from the video-
clip. The original size of video clips in the NfS dataset is

1. http://hdrihaven.com
2. http://ci2cv.net/nfs/index.html

1280 × 720 × F (with F , the number of frames in a given
video clip, those are ranging from a few hundreds to a few
thousands). The first frame of the video-block is randomly
sampled within the length of the video-clip i ∈ {0, ...F−N}.
Then a scale s ∈ [0.36, 0.40] is randomly sampled to rescale
the video-clip. Note that the minimum scaling factor of
0.36 is chosen so that 0.36 × 720 is slightly larger than
256, while the maximum scaling is chosen arbitrarily so
that the maximum zoom level roughly matches the typical
feature size one expects to generalize to for reconstruction.
The N frames in the video block are then cropped to a
size of 256 × 256. The 256 × 256 × N block we obtain
is then randomly flipped horizontally and vertically, and
is randomly time-reversed, in addition a random gamma
adjustment of brightness is performed with γ ∼ N (1., 0.3).

For all the training experiments with FC-nets, the same
procedure applies but video-blocks of size nw ·Bw×nh ·Bh×
N are sampled, in which (nw × nh) is the number of blocks
averaged in the reconstruction of a single block andBw×Bh
is the number of free parameters of optimized shutter func-
tion (using FC-net we only learn pixel-wise independent
shutter functions within a block). More specifically, our FC-
nets are trained on blocks of size nw ·Bw×nh ·Bh×N which
allows the reconstruction at inference to slide the FC-net of
input size nw ·Bw × nh ·Bh ×N by a stride of Bw and Bh
in each spatial dimension. Thus, we obtain, for each block
(leaving out the borders for the sake of clarity) (nw × nh)
reconstructions that can be averaged thus avoiding blocky
artifacts in the reconstruction. This procedure is similar to
the one proposed in [1] and is further illustrated in Figure 1.

1.2 HDR 2D U-Net

The 2D U-Net we use takes as an input H×W = 256×256,
a low dynamic range coded image and produces a 256×256
high-dynamic range image. The architecture we use for our
HDR reconstructions consists of 6 “downsampling mod-
ules” and 6 “upsampling modules”. Each downsampling
module by m consists of a convolution C↓m,1 with Nm 3× 3



Fig. 1. Illustration of the reconstruction by blocks using FC-nets.

kernels followed by a ReLU, followed by another convo-
lution C↓m,2 with Nm 3 × 3 kernels, followed by another
ReLU. Both the convolutions have a striding of 1 and a
padding of 1. The output of a module in the downward
pass is then downsampled by 2 using average pooling. We
have Nm = 2m · 32, thus at the most downsampled U-Net
level we have N5 = 1024 feature maps. Each “upsampling
module” consists of a bilinear upsampling by 2 followed by
a convolutionC↑m,1 with 3×3 kernels, this is concatenated to
the output of the corresponding “downsampling module”,
the concatenated input is then followed by a double convo-
lution module analog to the one in the downward pass.

Training loss and hyper-parameters: We train the
HDR 2D U-Net architecture with ADAM (with (β1 = 0.99
and β2 = 0.999, without weight decay) a learning rate
of ηψ = 1 · 10−3 and a batch size of 32, the encoder is
learnt with a slower learning-rate of ηθ = 0.1 · ηpsi. A
gradient clipping of 0.1 is used. We tested both a L1-loss
on the HDR values as well as a L1-loss on the tone-mapped
values, PSNR and SSIM do not reflect significant differences
between the two in our experiments, even though the type
of errors they produce is different. Notably the L1-loss on
the direct HDR values enforces bright regions (with high
values) to be more correct.

1.3 Video Compressive Sensing FC-nets
The FC-net we use takes as an input multiple (nh × nw)
blocks of size Bh ×Bw and produces nh × nw video-blocks
of size Bh × Bw × N . To reconstruct a whole image the
input of the FC-net is slid by a stride of (Bh, Bw) in both
spatial dimensions so that all blocks (ignoring blocks on the
borders for clarity) get reconstructed nh × nw times and
averaged (each reconstruction contains information coming
from different neihbourhoods) as illustrated in Figure 1.
As mentioned earlier, this scheme is used to avoid blocky
artifacts. The FC-net in our experiments has nw = nh = 2,
Bh = Bw = 8, thus the input to the neural network is of
size nw · nh · Bh · Bw = 256, we use N = 16 slots (which
is also the number of reconstructed frames thus the output
is of size nw · nh · Bh · Bw · N = 256 · 16 = 4096. Each
block thus benefits from nh ·nw = 4 reconstructions and the

FC-net has 3 hidden layers with 4096 units. All in all, this is
the following FC-net architecture 256× 4096× 4096× 4096.

Training loss and hyper-parameters: We train the
HFR FC-net architecture with ADAM (with (β1 = 0.99 and
β2 = 0.999, without weight decay) a learning rate of ηψ =
1 · 10−4 and a batch size of 256, the encoder is learnt with
the same learning-rate of ηθ = ηpsi. A gradient clipping of
1 is used. We use a voxel-wise (space-time) L1-loss.

1.4 Video Compressive Sensing 3D U-Net
The 3D U-Net we use takes as an input aH×W = 256×256
coded image and produces a H ×W ×N = 256× 256× 16
video-clip. The architecture we use for our high-speed re-
constructions now consists of 5 “downsampling modules”
and 5 “upsampling modules”. Similar to the 2D U-Net
architecture we use for HDR imaging. Each downsampling
module by m consists of a convolution C↓m,1 with Nm
3×3×3 3D-kernels followed by a ReLU, followed by another
convolution C↓m,2 with Nm 3×3×3 kernels, followed by an-
other ReLU. Both the convolutions have a striding of 1 and a
padding of 1. The output of a module in the downward pass
is then downsampled by 2 using a 3D-average pooling. We
have Nm = 2n · 48, thus at the most downsampled U-Net
level we have N4 = 768 feature maps. Each “upsampling
module” consists of a bilinear upsampling by 2 followed by
a convolution C↑m,1 with 3 × 3 kernels, this is concatenated
to the output of the corresponding “downsampling mod-
ule”, the concatenated input is then followed by a double
convolution module analog to the ones in the downward
pass.

Training loss and hyper-parameters: We train the
HFR 3D U-Net architecture with ADAM (with (β1 = 0.99
and β2 = 0.999, without weight decay) a learning rate of
ηψ = 5 · 10−4 and a batch size of 256, the encoder is learnt
with a slower learning-rate of ηθ = 0.1 · ηpsi. A gradient
clipping of 1 is used. We use a voxel-wise, that is in space-
time, L1-loss.

1.4.0.1 Training stopping criterion: All our FC-Net
models are trained for a maximum of 150 epochs. All our U-
Net models are trained for a maximum of 100 epochs. Those
numbers were observed to be the start of overfitting. Those



Frame t

Frame transfer
(deadtime)

Slot 1 Slot N

Frame t+1

Computation of 
g(.), set PIX to
integrate or not 

Idling time to lengthen
the sub-exposures

Mode 1: "standard"

Slot 1 Slot N Slot 1

Frame t Frame t+MFrame t+1

Copy PIX in-pixel memory 1

Frame transfers of M in-pixel
memories (deadtime)

Copy PIX in-pixel memory 2 Copy PIX in-pixel memory M

Mode 2: "burst"

Slot 1 Slot N

Frame t Frame t+1

Transfer of chunk 1
of in-pixel memory B
(i.e. from Frame t-1)

Copy in-pixel memory A
to in-pixel memory B

Transfer of chunk N
of in-pixel memory B
(i.e. from Frame t-1)

The N chunks of Frame t in memory B are 
transferred in each of the N slots of Frame t+1

Mode 3: "pipelined"

Fig. 2. Illustration of the different transfer models we implemented
on our sensor-processor

we determined using a subset of the training data used as a
held-out validation set and monitoring whenever the error
on this validation set was starting to increase.

2 ADDITIONAL DETAILS ABOUT THE OPTIMIZED
SHUTTER FUNCTIONS AND THEIR IMPLEMENTA-
TIONS

2.1 Parametrization of the shutter functions
All the shutter functions we train in our work (classes (b)
to (e)) are defined over an integer domain: the parameters
(the slot numbers) are integers. In addition, their co-domain
is binary: the shutter is either “on” or “off”. Those are
constraints that need to be enforced during the training of
the encoder. In simulation, we decompose the functions f(·)
in elementary functions that are shifted and horizontally
flipped variants of the Heaviside functions, hence the out-
put is binary. The domain is ensured to be integers by round-
ing operations. Then, using the automatic differentiation in
Pytorch [2] we solely have to implement the backward pass
of the Heaviside function (used as an elementary block) and
of say, the flooring operator (rounding and ceiling are also
simple variants of flooring).

2.2 Implementations of the shutter functions on our
sensor-processor
The implementation of the shutter functions on our SCAMP-
5 sensor-processor follows closely Algorithm 1 in the main
text. Nevertheless, we omitted details about the readout
of frames from the device. SCAMP-5 can carry-out com-
putations while integrating light, and it is also possible to
perform a frame readout when SCAMP-5 integrates light.
One can think of the value of the light-register, that we
denote PIX , as changing as light falls onto it. While we

implement the shutter functions, the value of PIX is reset
to 0 at the end of each slot after being either added to the
frame register when the shutter is “on” or discarded when
the shutter function (the output value of g(·) = 0) is “off”.

Integration of light thus can always happen in the
background whether a frame is being readout, or whether
computation happens. However, computation and frame
readout are mutually exclusive. This implies that a pixel
shutter cannot be modulated while a frame is being readout.
This means, in a “standard” readout mode, as illustrated in
the first row of Figure 2, there is a dead-time at the end of
each frame, when it is being readout. To mitigate this issue
we implemented two other transfer modes.

In case one wants to image a transient and very fast
phenomenon without a deadtime every coded frame, one
can delay the transfer using in-pixel memory buffers. If one
uses M in-pixel registers to do so, one needs to transfer M
frames every M frames. We were able to keep M = 4 out of
the 7 analog registers available on SCAMP, and we can thus
take a “burst” of 4 coded images without deadtime in this
mode. This is illustrated in the second row of Figure 2.

Finally, we implemented a third mode in which a
double-buffer mechanism is used, along with pipelining,
to mask the transfer/readout time. To do so, each frame
is divided into N sub-frames, which are sent out in chunks.
Specifically, since it is possible to integrate light while trans-
ferring a frame, a chunk containing a sub-frame is sent out
in each slot, in place of idling the processor to lengthen
the sub-exposures. Hence, the number of sub-frames and
chunks have to match. Note that, the value of a pixel in
the coded frame is only fully determined at the end of the
final N th slot. Thus, the pipelining we have just described
can only be performed on a coded frame that has been fully
captured. At the end of the N th slot of a frame t, instead of
being readout, this frame is copied in an in-pixel memory
A, this is the frame that will be sent in chunks during the
formation of the coded frame t + 1 in another memory, say
B. We illustrate this ”pipelined” transfer mode in the third
row of Figure 2.

2.3 Remarks about the optimized shutter function

class (b): The learning of class (b) converges to a
mostly gray 50% exposure level and uses low exposures
distributed in a “pseudo” poisson-disk fashion allowing it
to reconstruct very high irradiances. This is because we
introduced a gain parameter (a single variable for every
HDR) optimized by the network for each image (as part
of the encoder), so that we can accomodate many different
illumination conditions in simulation. In the real-world
experiments, this “gain” is ignored. However, its analog is
that each image is taken so as to have most of the image
well-exposed (as one reasonable photographer would do).
The learnt gain in simulation thus translates to a global
exposure time in the real-world experiment. This global
exposure was configured using the exact same mechanism
as the one discussed in Section 3.2).

class (c): Class (c) patterns have a single degree of
freedom allowing them to shift their “offset”, that is when
the pixel start exposing, in time. Through learning, pixels
tend to make sure they cover different starting times. Hence



one can see in Figure 7 that clusters that were initially
present in the randomization are spread-out.

class (d): Due to the varying exposure lengths across
pixels, class (d) seems to pose an issue for reconstruction.
The deep networks we trained to reconstruct those codes
converged much later and some of them still presented
artifacts such as flickering in some regions of the videos or
with regions showing a clearly wrong average brightness.
Some authors in the compressive sensing literature have
noted the importance of 1) sampling all the pixels an equal
number of times in the random projections and 2) each pixel
capturing with random projections of “equal amount” of
energy. Clearly, assumption 2) is violated, and as it can be
noted in the images, the codes through learning indeed tend
to converge towards having equal lengths.

class (e): The learning of class (e) tends to converge
towards lengthened exposure bumps with much fewer low
frequencies (in the time dimension) than a random pattern.

3 OTHER EXPERIMENTAL CONSIDERATIONS

This section gives experimental details about the capture of
real data using our SCAMP-5 prototype.

3.1 About our prototype sensor-processor

SCAMP-5 is used as our prototype programmable sensor-
processor for all our experiments. SCAMP-5 is a 256 × 256
pixel array with mixed-signal ALUs collocated with photo-
sensitive elements in each pixel. Each processing element
contains 7 analog memories as well as a 13 1-bit single
bit registers. Those are implemented using 176 transistors,
yielding a pixel pitch of about 30µm with a fill-factor of
about 6% in a 0.18µm 1P6M CMOS process. Additional
details about the sensor can be found in [3].

3.2 Setting the exposure duration

The sub-exposure lengths (i.e the duration of each time slot)
is configurable in our prototype system.

High-speed imaging: In all our experiments the sub-
exposure lengths were varied to match the physical time
scale of the process being imaged. Those range from less
than 0.3ms (> 3000FPS) (balloon experiment) to about
a millisecond. They are controlled by a single parameter
that arbitrary ”lengthens” δt (refer to Algorithm 1 in the
main text) by idling the pixel-processors at the end of their
processing. Note that the pixel-wise computation time is
negligible for all codes because the decoding functions g(.)
functions are designed to be trivial to compute on-chip.

High-dynamic range imaging: In the high-dynamic
range experiment we made sure that all the pixels are
globally-well exposed, as we mentioned earlier in Sec-
tion 2.3.

The total exposure-length for a given frame is solely
determined by the number of sub- exposures, which is set to
16 in all the high-speed experiments and 64 to all the HDR
experiments, multiplied by their length, that is 0.3 to ∼ 1ms
and about 5ms in the HDR experiments.

PSNR SSIM

Bilinear 18.95 0.4133
ThinnedOut 20.65 0.4556
Hitomi et al. 26.22 0.7258

FC-net (ours, opt. class (c)) 38.14 0.9555
U-Net (ours, opt. class(c)) 32.40 0.8118

TABLE 1
Summary of additional baselines with 200 video-clips taken from the

NFS dataset.

3.3 Artificial lighting for high-speed imaging

Due to the very short integration times that were used
in some of our high-speed imaging setups, and due to
the low fill factor of our sensor-processor prototype (about
6%), some of our experiments (for instance, the exploding
balloon) were performed under artificial lighting (using an
ARRI Junior 1000 Plus Tungsten Fresnel light controlled by a
potentiometer). The irradiance we measured in our artificial
lighting scenarios is typically between 1.1 − 1.7kWm−2

measured at 561nm (lower bound is comparable to the solar
power density measured for a clear sky on a bright day at
sea-level).

4 ADDITIONAL RESULTS

4.1 Video Compressive Sensing / High-speed imaging

We provide additional results in the form of qualitative and
quantitative results illustrating the discrepancies between
our method and baselines in Figure 3 and Table 1.

The bilinear baseline refers to a reconstruction obtained
from the coded exposure of a frame by bilinearly interpolat-
ing all the pixels that had their shutter off at the time of the
reconstructed frame.

The thinned out baseline refers to a reconstruction
obtained from a ground-truth frame by subsampling in
space by the same amount the final reconstruction is super-
resolved in time. In the case of a 16 slot shutter function
inducing a 16× super resolution, the ground truth frame to
be thinned out is subsampled by 4 in each spatial direction.
We use bilinear downsampling and bilinear interpolation
for the resizing of the full frame.

The Hitomi et al. baseline is an equivalent of the
method for video compressive sensing and reconstruction
presented in [4], it is using a dictionary with 4096 atoms
learnt with orthogonal matching pursuit (OMP). The re-
construction also uses orthogonal matching pursuit. The
dictionnary is learnt on 500000 patches extracted from the
same training set we used for learning our U-Nets and FC-
nets (refer to Section 1).

For Table 1, we used 200 video-clips randomly extracted
from the same validation set we used to evaluate our U-Nets
and FC-nets

REFERENCES

[1] M. Iliadis, L. Spinoulas, and A. K. Katsaggelos, “Deep fully-
connected networks for video compressive sensing,” Digital Signal
Processing, vol. 72, pp. 9–18, 2018.

[2] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differen-
tiation in pytorch,” 2017.



Ground truth Thinned-out Bilinear Hitomi et al. FC-net class (c)
ours

U-Net class (c)
ours

Fig. 3. A visual quality comparison of our results against other baselines. The pannel is best viewed in an electronic document viewer while
zooming-in. Green squares emphasize some of the regions where the differences are most noticeable between the methods.

[3] S. J. Carey, A. Lopich, D. R. Barr, B. Wang, and P. Dudek, “A
100,000 fps vision sensor with embedded 535gops/w 256× 256
simd processor array,” in 2013 Symposium on VLSI Circuits. IEEE,
2013, pp. C182–C183.

[4] Y. Hitomi, J. Gu, M. Gupta, T. Mitsunaga, and S. K. Nayar, “Video
from a single coded exposure photograph using a learned over-
complete dictionary,” in Int. Conference on Computer Vision (ICCV).
IEEE, 2011, pp. 287–294.


