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Abstract—Camera sensors rely on global or rolling shutter functions to expose an image. This fixed function approach severely limits

the sensors’ ability to capture high-dynamic-range (HDR) scenes and resolve high-speed dynamics. Spatially varying pixel exposures

have been introduced as a powerful computational photography approach to optically encode irradiance on a sensor and

computationally recover additional information of a scene, but existing approaches rely on heuristic coding schemes and bulky spatial

light modulators to optically implement these exposure functions. Here, we introduce neural sensors as a methodology to optimize per-

pixel shutter functions jointly with a differentiable image processing method, such as a neural network, in an end-to-end fashion.

Moreover, we demonstrate how to leverage emerging programmable and re-configurable sensor–processors to implement the

optimized exposure functions directly on the sensor. Our system takes specific limitations of the sensor into account to optimize

physically feasible optical codes and we evaluate its performance for snapshot HDR and high-speed compressive imaging both in

simulation and experimentally with real scenes.

Index Terms—High-dynamic range imaging, video compressive sensing, high-speed imaging, programmable sensors, vision chip, deep

neural networks, end-to-end optimization
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1 INTRODUCTION

MOST contemporary digital cameras rely on a common
working principle inherited from their analog ances-

tors: They capture an image by exposing photo-sensitive
elements for a fixed exposure time. In modern digital sen-
sors, this is either implemented using a global or a rolling
shutter. In either case, the fixed exposure time of current
sensors severely limits their ability to record natural scenes
that exhibit a high dynamic range (HDR) or fast motion.

Computational photography has enabled us to overcome
some of these challenges using optical coding strategies and
computational image reconstruction. For example, HDR
images can be recovered frommultiple different exposures [1],
[2] or from a single image with spatially varying pixel expo-
sure [3], [4], [5]. Similarly, high-speed video can be estimated
from a single image recorded with a per-pixel coded expo-
sure [6], [7], [8], [9], [10]. However, these techniques have two
drawbacks. First, they usually employ either heuristic or ran-
dom optical coding strategies, which are suboptimal. Second,

they typically require a high-speed spatial light modulator
(SLM) to implement the optical coding. SLMs are expensive,
they create bulky device form factors when integrated into an
imaging system, and it is challenging to precisely align them
at the required accuracy with respect to the sensor. To miti-
gate these shortcomings, specialized sensors have been
designed for applications inHDR [11], [12], [13] or high-speed
imaging [14], [15]. However, these devices cannot be easily
reconfigured for other applications.

Here, we propose an end-to-end optimization strategy
for jointly learning spatially varying pixel exposures and
neural network–based image reconstruction algorithms for
HDR and high-speed imaging. Rather than implementing
these optical codes using SLMs, we build on emerging
focal-plane sensor–processors [16], [17] that offer simulta-
neous sensing and processing capabilities in each pixel.
These massively parallel, fine-grain processing capabilities
allow us to control the specific exposure code electronically
in each pixel. As illustrated in Figs. 1 and 2, our system
learns the optical coding strategies for a given application
in simulation. This training phase accounts for the specific
restrictions of a sensor–processor, which may limit the
degrees of freedom of a feasibly shutter function. After
training, the optical codes are compiled into an instruction
set that is uploaded onto the reconfigurable sensor, which
executes these shutter functions during inference. Our
approach can be interpreted as an optical encoder, digital
decoder system where the sensor implements the physical
coding layer and a differentiable algorithm represents the
digital decoder.

� J.N.P. Martel and G. Wetzstein are with the Department of Electrical
Engineering, Stanford University, Stanford, CA 94305.
E-mail: {jnmartel, gordon.wetzstein}@stanford.edu.

� L.K. M€uller is with IBM Research Z€urich, R€uschlikon 8803, ZH,
Switzerland. E-mail: lorenz.k.mueller@gmail.com.

� S.J. Carey and P. Dudek are with the School of Electrical and Electronic
Engineering, The University of Manchester, Manchester M13-9PL,
United Kingdom. E-mail: {stephen.carey, p.dudek}@manchester.ac.uk.

Manuscript received 27 Mar. 2020; revised 4 Apr. 2020; accepted 5 Apr. 2020.
Date of publication 13 Apr. 2020; date of current version 3 June 2020.
(Corresponding authors: Julien N.P. Martel.)
Recommended for acceptance by A. Chakrabarti.
Digital Object Identifier no. 10.1109/TPAMI.2020.2986944

1642 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 42, NO. 7, JULY 2020

0162-8828� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Stanford University. Downloaded on July 14,2020 at 19:43:41 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-4928-5487
https://orcid.org/0000-0002-4928-5487
https://orcid.org/0000-0002-4928-5487
https://orcid.org/0000-0002-4928-5487
https://orcid.org/0000-0002-4928-5487
mailto:jnmartel@stanford.edu
mailto:gordon.wetzstein@stanford.edu
mailto:lorenz.k.mueller@gmail.com
mailto:stephen.carey@manchester.ac.uk
mailto:p.dudek@manchester.ac.uk


With this end-to-end neural sensor approach, we make
the following contributions:

� We introduce the idea of learning the “sensing”
strategy of a camera in an end-to-end fashion. Specif-
ically, we present a differentiable neural sensor
model to jointly optimize spatially varying pixel
exposures and image processing networks.

� We demonstrate that this learned optical coding
compares favorably to baselines with random coding
for video compressive sensing and HDR imaging.

� We implement a prototype focal-plane sensor–pro-
cessor with learned pixel exposures and we evaluate
it with the aforementioned applications.

2 RELATED WORK

HDR Imaging and Video Compressive Sensing. The lim-
ited dynamic range of conventional active pixel sensors has
been addressed by a number of computational photography
approaches. For example, several low-dynamic-range
images can be recorded and computationally fused into a
single HDR image [1], [2], [18], [19], [20]. However, captur-
ing multiple images sequentially or with multiple sensors
has several drawbacks, including challenges in dealing with
motion and system calibration. As an alternative, several
single-shot approaches have been introduced[3], [4], [5],
[21], [22], [23], [24]. These systems either use external spatial
light modulators (SLMs), neutral density (ND) filter arrays
on the sensor, or varying ISO modulation to control the
pixel exposures. A post-capture HDR image reconstruction
step is required for most of these approaches. Unfortu-
nately, none of these methods seems practical because SLMs
are expensive and difficult to integrate robustly into an imag-
ing system, ND filters require the sensor to be altered perma-
nently, and spatially varying ISO is only available with very
limited types exposure patterns. High-framerate compressive
imaging and compressive video sensing have also been
widely studied [6], [7], [8], [9], [10], [25], [26], [27], [28], [29],
[30], [31] and prototyped by implementing high-speed coded
exposures using various types of SLMs. Inspired by all of
these methods, we propose an end-to-end framework that
allows us to jointly optimize the spatially varying pixel

exposures and reconstruction algorithms of HDR or high-
speed imaging. Compared to the random or heuristic codes
used in previous work, we demonstrate that optimized cod-
ing strategies for these applications significantly improve the
image quality.

The closest approach to our proposal is the concurrent
work by Iliadis et al. [32]. This approach also uses a neural
network to optimize the binary coding patterns for video
compressive sensing. However, our work takes this idea
one step farther in optimizing physically realizable pixel
exposures for emerging programmable sensors and we
evaluate our system in detail with a prototype sensor that
does not rely on any external SLMs or ND filters to perform
the optical exposure coding. Our system is the first to dem-
onstrate both coded HDR imaging and video compressive
sensing on a practical sensor with programmable pixel
exposures.

Exotic Sensors. A plethora of unconventional sensors
has been explored in previous work. For example, HDR
imaging has been demonstrated with multiple exposures
built into the pixels [11], [12], using events to signal over-
flow of the pixel buffer and reset it [33], using precomputa-
tion on the focal plane with spatially varying and adaptive
exposures [34], [35], [36], using multiple photodiodes with
various gains in each pixel [37], or using logarithmic com-
pression at the photosensor [38], as well as many other
approaches [13], [39], [40], [41]. Per-pixel coded exposures
have also been realized in several dedicated sensors [42],
[43], [44], [45], for example with applications to video com-
pressive sensing. Finally, dynamic vision or event sen-
sors [46], [47], [48] have been demonstrated to achieve high-
dynamic range and high-speed imaging. However, the
image quality achieved with all of these sensor technologies
is fundamentally limited by their fixed function pipeline.
None of them offer dynamically re-programmable pixel
exposures.

Programmable and Reconfigurable Sensors. A rapidly
increasing number of sensors provide unprecedented proc-
essing capabilities by co-locating both sensing and process-
ing electronics in their pixels. This class of sensors has been
coined near-focal-plane sensor–processor [16]. These devices
were first designed with low-level image processing capa-
bilities in mind [49], [50], [51] before being developed to
provide some level of programmability [52], [53], [54], [55],
[56]. Nowadays, the idea of embedding processing capa-
bilities inside a pixel has (mostly) been instantiated in very
high-frame rate sensors that can have complex in-pixel
analog-to-digital conversion (ADC) with a limited amount
of processing [14], [15]. Nevertheless, a few sensors such as
SCAMP-5 [17] offer fully programmable pixels, and have
been used in applications such as depth-from-focus [57],
feature extraction [58] or ego-motion estimation [59]. Here,
we introduce an end-to-end optimization paradigm to
jointly designing the spatially varying pixel exposures
offered by emerging sensor–processors and neural net-
work-based image reconstruction frameworks for applica-
tions in HDR and high-framerate imaging. Our work paves
the way for a new class of neural sensors with optimized
application-specific capabilities.

End-to-End Optimization of Optics and Image Process-
ing. Although the co-design of optics and algorithms is

Fig. 1. Illustration of our end-to-end neural sensor framework. The expo-
sure program of a sensor (physical layer) is learned end-to-end with a
decoder (digital layer) for applications like video compressive sensing.
Here, we show a single coded exposure captured with our prototype
camera and several frames of the high-speed video reconstructed from
this image showing an exploding balloon.
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one of the core ideas behind computational photography,
programming tools with automatic differentiation capa-
bilities have only recently enabled a true joint design of
hardware and software. This idea has previously been
explored for a number of applications, such as color
imaging and demosaicing [60], extended depth of field
imaging [61], depth imaging [62], [63], image classifica-
tion [64], and HDR imaging [65]. While the key idea of
end-to-end optimization of camera parameters and algo-
rithmic processing is similar in these approaches and
ours, to our knowledge we are the first to propose a
learning strategy for the spatially varying pixel exposures
of a programmable sensor–processor.

3 END-TO-END OPTIMIZATION OF PIXEL

EXPOSURES AND IMAGE RECONSTRUCTION

In this section, we develop a mathematical framework for
end-to-end optimization of spatially varying pixel exposures
and a differentiable reconstruction algorithm, such as a neu-
ral network. We interpret this system as an electronic
encoder, digital decoder system (see Fig. 1).

3.1 Modeling Pixel Exposures as an Encoder

We consider an exposure model in which a pixel at position
ði; jÞ on a sensor array integrates the incident irradiance Li;j

over the exposure time Dt as

Ei;jðtÞ ¼
Z tþDt

t

Li;jðt0Þ dt0: (1)

Here, Ei;j is the exposure, and relates to an image as
Ii;jðtÞ ¼ R Ei;jðtÞ

� �
in which R is the camera response

function, and Ii;j is the reported intensity value of each
pixel.

Following recent work on coded and compressive imag-
ing (see Section 2), we introduce a shutter function S that
modulates pixel ði; jÞ throughout its exposure time

Ei;jðtÞ ¼
Z tþDt

t

Li;jðt0Þ � Si;jðt0Þ dt0: (2)

In our work, we primarily consider binary shutter functions
Si;j defined on N discrete time slots. Thus, we rewrite
Equation (2) as

Ei;j ¼
XN�1
n¼0

Li;j n½ � � Si;j n½ �: (3)

A common approach is to write this discrete model as
a matrix–vector multiplication E ¼ SL, where E 2 RM is
the vectorized form of the measured exposure of all M
pixels, L 2 RMN is the vectorized form of the temporally
varying irradiance incident on all pixels, and S 2 RM�MN

is the measurement matrix. Due to the fact that S often
has fewer rows than columns, and is thus not invertible,
a compressive sensing approach is commonly applied to
estimate L from E using some form of sparsity-based
regularization.

Here, we adopt a slightly different notation that repre-
sents the shutter functions in a parameterized way. Specifi-
cally, we assume that these functions are fully described by
a set of parameters f, such that we can define an encoding
operator Sf : RMN ! RM to represent Equation (3). This
operator can represent several different classes of shutter
functions, each defined by their own limited degrees of free-
dom, as illustrated in Fig. 3.

We consider scenarios inwhich each pixel ði; jÞ on the sen-
sor can realize its own shutter function, hence there is a set of
parameters fi;j for each pixel. We further assume that the
shutter functions do not vary from one exposure to another.
The most general class of such shutter functions defines each
time slot as either “on” or “off” and thus consists of N free
parameters for each pixel Si;j½n� 2 f0; 1g; 8n 2 f0; . . . ; N � 1g
(see class (e) in the last row of Fig. 3).

3.2 Recovering an Image With a Decoder

To estimate the irradiance from the coded measurements,
we use a differentiable reconstruction algorithm or decoder
Dc : RM ! RMN , which is defined by the set of parameters
c. Given a pre-trained encoder–decoder, one would capture
measurements with the corresponding shutter functions
E ¼ Sf Lð Þ and then estimate the irradiance as bL ¼ Dc Eð Þ.
This is commonly referred to as the inference stage.

Fig. 2. Diagram of the proposed neural sensor system. During the training phase (top row) an electronic encoder—spatially varying pixel exposures
parameterized by f—is jointly optimized with a digital decoder—a neural network parameterized by c—in simulation using an application-specific
loss function L. The optimized shutter functions are compiled into a pixel code that is uploaded on the programmable sensor. During inference
(bottom row), the sensor captures images by applying these exposure functions and the pre-trained network recovers the final image.
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To determine an optimal set of parameters ff;cg, we
train the encoder–decoder end-to-end with some dataset
containing K ground truth irradiance maps using the loss
function L by minimizing the following objective function
with some variant of stochastic gradient descent

argmin
ff;cg

XK
k¼1
L Dc � Sf LðkÞ

� �
; LðkÞ

� �
: (4)

This is a self-supervised learning scenario in which the
encoder implements a physically feasible shutter function
and the decoder recovers the image. Note that both encoder
and decoder are jointly optimized in this case, so the optical
codes parameterized by f influence the reconstruction algo-
rithm c and vice versa. Moreover, the optimal choice of
both encoder and decoder depends on the loss function,
which could be a low-level image metric, such as mean
squared error (MSE), or a higher-level loss such as image
classification accuracy.

The encoder–decoder system presented here is some-
what generic and could be applied to many different coded
computational photography problems. In the following, we
discuss how to incorporate specific constraints of our pro-
grammable sensor and model them in a differentiable way
using the encoder Sf. We also discuss different choices for
the decoder Dc for the specific problems of HDR and high-
speed compressive imaging.

4 DIFFERENTIABLE & PROGRAMMABLE

SENSOR–PROCESSOR

4.1 A Programmable Sensor–Processor

To implement the optimized shutter functions we use
SCAMP-5 [17], a reconfigurable near-focal plane sensor–
processor. The sensor–processor is a 256� 256 pixel array.
Each pixel contains a photo-sensitive element collocated
with a general purpose programmable Processing Element
(PE).

Each PE consists of a simple Arithmetic Logic Unit
(ALU) implemented with a mixed-signal circuit along with
a few memories. Those are 7 analog memories as well as 13
single bit digital memories. Analog memories can store val-
ues from the photo-sensitive element as well as the results
of analog operations carried out by the ALU. Digital memo-
ries on the other hand can be fed by the output of a compar-
ator acting on the analog memories as well as set and
cleared by dedicated instructions.

The integrated value of a photo-sensitive element (since
its last reset) can be read out non-destructively at any
point in time. It is thus possible to “sense” and “compute”
simultaneously. The SCAMP-5 vision chip we use is har-
nessed by an NXP LPC4357 micro-controller, dispatching
instructions to the vision chip, reading out data, and act-
ing as a server when communicating with an external
computer.

Code executed by the micro-controller harnessing the
vision-chip is written in C++, code that is dispatched to the
vision-chip is written in a Domain Specific Language (DSL) in
the form of what can be thought as “compute kernels” exe-
cuted in parallel by all the pixels’ PE on their local piece of
data following the Single InstructionMultiple Data paradigm.
These compute kernels consist of a set of macros and high-
level instructions. An example of such a high-level instruction
is transferring the content of an analogmemory to another.

Each high-level instruction from the DSL compiles down
to a stream of instruction code words (ICW) in a syntax
directed translation fashion, i.e., the parser drives the gener-
ation of the ICW stream. This ICW stream can be thought of
as microcode that indicates at each instruction clock, which
“gates” are to be switched on chip to, say, write the content
of a cell implementing an analog memory to another.

Algorithm 1. Pseudocode for the Implementation of Our
Framework on a Near-Focal Plane Processor The For-Loops
Highlighted in Grey can be Thought as “parallel-for”
Executed by Compute Kernels. PIX is the Photosensitive
Element, Whose Value is at Any Instant the Integrated
Value of Irradiance From the Last Reset (One can Alter-
natively Think About Every Inner Loop Incrementing
PIX as Seen in the Comment in the Pseudocode)

for all pixels (i, j) do
Ci;j  fðSi;jÞ

for all frames do
for all pixels (i, j) do
Framei;j  0

for all slots n 2 f0; . . . ; N � 1g do
for all pixels (i, j) do
if gðCi;j;nÞ ¼ 0 then
PIXi;j  0

else if gðCi;j;nÞ ¼ 1 then
Framei;j  Framei;j þ PIXi;j

// PIXi;j  PIXi;j þ Li;jðtÞ � dt
Readout Frame

4.2 Implementation and Execution of Shutter
Functions

In our implementation, at boot up, each pixel is distributed
a pixel code Ci;j 2 N, that we also represent as a vector of B

Fig. 3. A diagram illustrating different shutter functions. The top diagram
shows how we represent a shutter function: A solid line on a given slot n
indicates that for this slot: Si;j½tþ n dt� ¼ 1, otherwise Si;j½tþ n dt� ¼ 0.
The bottom rows show four classes of shutter functions (from the
simplest to the most general). For each class, four examples of shutter
functions for different pixels are represented by different colors.
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bits: Ci;j ¼ f0; 1gB which stores an encoding of the shutter
function Si;j at the pixel level through the function

f : f0; 1gN ! N

fðSi;jÞ ¼ Ci;j:
(5)

For each frame, during the exposure DT , the microcontroller
dispatchesN times, to all the pixels, a global signal occurring
precisely at the beginning of each slot. The signal is an inte-
ger corresponding to the slot number n 2 f0; . . . ; N � 1g. All
the pixels’ PE evaluate, in parallel, some decoding function g
of the pixel code and of the global signal (the slot number)

g : N� f0; . . . ; N � 1g ! f0; 1g
gðCi;j;nÞ ¼ pi;j;n:

(6)

The function g encodes the state pi;j;n the pixel ði; jÞ should
be in for the timeslot n. When gðC;nÞ ¼ 1 the pixels turns
“on”, while gðCi;j;nÞ ¼ 0 it is switched “off”. The pair of
encoding function f and decoding function g depends on
the particular class of shutter function we implement and
has to satisfy the identity

g
�
fðSi;jÞ; n

� ¼ Si;j½n� 8ði; jÞ; 8n; (7)

in order to be correct. These encoding/decoding pairs are not
unique as we shall see in the following. A pseudo-code sum-
marizing how our exposure program is implemented on our
device is given in Algorithm 1. Note that the encoding func-
tion f is executed only once, at boot up, and does not need to
be computed in-pixel: it can be precomputed (in the micro-
controller) and distributed to the pixel, simply setting its dig-
ital memories. Therefore, it can be arbitrarily complex. On
the other hand, the decoding function g needs to be simple
enough that it can be evaluated by the pixel ALU. In all our
implementations, the function g can be expressed as a few
digital comparisons and simple digital operations (requiring
only using a few OR and NOT evaluations, which are the
two gates “natively” built-in the pixel ALU). Furthermore,
since each pixel has a limited memory, there exists a trade-
off between the complexity of the shutter function against its
time-resolution, i.e the number of slots it runs on.

4.3 General Shutter Functions

Shutter functions can be classified according to their com-
plexity as well as their intended use: for HDR, for high-
speed etc. The next subsections describe the classes outlined
in Fig. 3 and Table 1 in detail.

The most general class of shutter functions that can be
defined on N slots prescribes independently for each slot
whether the shutter is “on” or “off” at pixel ði; jÞ (class (e) in
Table 1) . Using such a general class of shutter functions, a sys-
tem can only use N ¼ B slots, constrained by the number of
bitsB that can be locally stored in each pixel digitalmemories.
On SCAMP-5 thismeanswe cannot usemore than 13 slots.

Class (e): Such a shutter function can be parameterized by a
vector fðeÞ

i;j
2 f0; 1gN . The nth entry of this vector states

whether the shutter is on (1) or off (0) at slot n

S
ðeÞ
i;j ½n� ¼

XN�1
n0¼0

fðeÞ
i;j
½n0� d½n� n0�; (8)

in which d½n� is the discrete delta function. Examples of such
class ðeÞ functions for different pixels are illustrated in
Fig. 3. The parameters to be learned for our encoder are
these vectors fðeÞ

i;j
for all pixels. A natural encoding function

f is the conversion of this binary code in an integer

f ðeÞðSi;jÞ ¼
XN�1
n¼0

Si;j½n� 2n: (9)

The decoding function g is simply the projector function
that selects the nth bit of Ci;j

gðeÞðCi;j;nÞ ¼ projnðCi;jÞ
¼ Ci;j½n� ¼ bCi;j � 2�nc mod 2:

(10)

4.4 Structured Shutter Functions

Less “general” (more structured) shutter functions typically
require an encoding on fewer bits, allowing us to implement
longer shutter functions, with more slots! Hence, for a fixed
code lengthB, there is a trade-off: one can describe long sim-
ple shutter functions, or arbitrarily complex (random) but
short shutter functions. Indeed, regularities in the shutter
function can be used by the encoding and decoding func-
tions. Examples of such longer but simpler shutter functions
are functions of class ðbÞ; ðcÞ; ðdÞ as illustrated in Fig. 3. These
are the functions we use for HDR imaging–class ðbÞ–and
high frame rate imaging–class ðcÞ, ðdÞ and ðeÞ.

4.4.1 HDR Imaging

A first use-case for learning optimized shutter functions is
high-dynamic range imaging. We assume the imaged scene
does not move (much) throughout the exposure time of a

TABLE 1
Pairs of Encoding and Decoding Functions for Certain Class of Shutter Functions For Compactness we Denote the Max Rectifier

xþ ¼ maxðx; 0Þ and the Min Rectifier x� ¼ �minðx; 0Þ as well as the Backward Difference Operatorrx½n� ¼ x½n� � x½n� 1�

Class fðSÞ B ¼ jCj (bits) gðC;nÞ
ðaÞ - 0 1

ðbÞ PN�1
n¼0 S½n� logN HðC � nÞ

ðcÞ PN�1
n¼1 nðrS½n�Þþ logN P L � nþ 1

2

� �� C� �
ðdÞ PN�1

n¼1 n � ðrS½n�Þþ þN
PN�1

n¼1 n � ðrS½n�Þ� 2 logN H n� C modNð Þð Þ �HððC=NÞ � nÞ
ðeÞ PN�1

i¼0 S½i� 2i N projnðCÞ ¼ bC � 2�nc mod 2
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single frame. In this scenario, even ifwe consider shutter func-
tion consisting of multiple “on” bumps interspersed during
the whole exposure time Dt, this is equivalent to consider a
shutter function inwhich thosewere contiguous and the shut-
ter function for a pixel starts “on” at n ¼ 0 and goes “off” after
some amount of time. This is because, assuming Li;j½n� ¼ Lcst:

for thewholeDt ¼ N � dtwe can rewrite Equation (3) as

Ei;j ¼ Lcst:

XN�1
n¼0

Si;j½n� ¼ Lcst: f
ðbÞ
i;j ; (11)

which is independent of the position of the “on” bumps in
the shutter function and simply weighs the incoming irradi-
ance Lcst: by the amount of time f

ðbÞ
i;j ¼

PN�1
n¼0 Si;j½n� the shut-

ter is “on”. Hence, those can be parameterized with a single
parameter corresponding to this “weight”. This class of
shutter functions is one of the simplest (it has only one
parameter to learn for each shutter function) but can cer-
tainly achieve HDR imaging as different pixels ði; jÞ will
learn different shutter functions corresponding to different
exposure times controlled by f

ðbÞ
i;j .

Class (b). Specifically these functions can be parame-
terized by starting the exposure in the “on” state at n ¼ 0
and using the single parameter to encode when the shutter
should stop. These are functions of class (b) in Fig. 3. This
parametrization of Si;j is the horizontally flipped Heaviside
functionH shifted by f

ðbÞ
i;j on the time axis

S
ðbÞ
i;j ½n� ¼ HðfðbÞi;j � nÞ: (12)

Since a function of class ðbÞ only needs to encode the slot
number at which a pixel stops integrating, if we consider such
a function defined onN slots, onlyB ¼ logN bits are required
to encode that number. Another way to see this, is that withB
available digital memories one can store a number that
addresses 2N slots. This is obviously greater than the N slots
one could implement for a function of class ðeÞ, the most gen-
eral class. An encoding function for this class can bewritten as

f ðbÞðSi;jÞ ¼
XN�1
n¼0

Si;j½n�: (13)

Given all the bits of Si;j are 0 after a given nend that encodes
the end of integration, f just encodes nend as an integer. As a
consequence the paired decoding function can simply
encode Ci;j ¼ f

ðbÞ
i;j and be

gðbÞðCi;j;nÞ ¼ HðCi;j � nÞ: (14)

4.4.2 Video Compressive Sensing

We further experimented with a class of shutter functions
for high frame rate imaging. In general, it is possible to
reconstruct a video sequence at high frame rate from a sin-
gle frame as long as the shutter functions start at different
offsets (and eventually stop at different offsets) within the
exposure. Indeed, if all shutter functions at all pixels were
to start at the same point in time n ¼ nstart, and would stop,
say at nend, it would be impossible to reconstruct the irradi-
ance out of the time interval ½nstart; nend� based on some real,
captured information.

Class (c). Thus, the simplest class of shutter functions
one can implement is obtained by offsetting the starting
point of the shutter functions of each pixel, and exposing a
single time, for a fixed duration L. The shutter is “on” for a
fixed amount of time L and then goes “off” for the rest of
the exposure duration. This can be described using a single
parameter f

ðcÞ
i;j (for instance the start time nstart) and can be

parameterized as

S
ðcÞ
i;j ½n� ¼ P L � nþ 1

2

� �
� f

ðcÞ
i;j

� �
; (15)

in which P is the rectangle function centered in 0, and
PðxÞ ¼ 1 when x 2 ½�0:5; 0:5� and 0 everywhere else. Such
shutter functions belong to class ðcÞ as illustrated in
Fig. 3. They also require B ¼ logN bits for their encoding,
as they can also be described by a single free parameter
as in Equation (15), in which f

ðcÞ
i;j represents the slot num-

ber when the integration starts. Since there is a single sub-
exposure of a fixed duration L that is prescribed a-priori,
the slot at which the pixel stops integrating is simply
nend ¼ nstart þ L. Note that, alternatively, the function
could be encoded by the time slot at which integration
stops, which makes no difference, but shows that these
encoding/decoding pairs are not unique. An encoding
function for this class can be written as

f ðcÞðSi;jÞ ¼
XN�1
n¼1

n �max Si;j½n� � Si;j½n� 1�; 0� �
; (16)

which simply encodes the starting slot as an integer, while a
decoding function is again simply reflecting the parametri-

zation of the shutter function, with Ci;j ¼ f
ðcÞ
i;j

gðcÞðCi;j;nÞ ¼ P L � ðnþ 1

2
Þ � Ci;j

� �
: (17)

Class (d). For more complex behavior, one can add
a second parameter to this shutter function. This parameter
encodes, for instance, the end time nend of the “bump”
instead of integrating at each pixel for a fixed time L. Since
all the bumps have different durations (in addition of being
offset) this might be beneficial when the aim is to recover

Fig. 4. A zoomed-in diagram of the encoder. This diagram illustrates the
implementation details of our encoder for a given pixel ði; jÞ and a single
parameter fi;j. The learned parameter is the real-valued f̂i;j. The quan-
tized parameter fi;j is the one compiled on the sensor in Ci;j ¼ fðSi;jÞ.
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HDR information in addition to high-frame rate reconstruc-
tion. A parameterization for such functions is

S
ðdÞ
i;j ¼ Hðn� f

ðdÞ;1
i;j Þ �HðfðdÞ;2i;j � nÞ; (18)

effectively realizing a rectangle function with two Heaviside
(one is flipped) shifted respectively by the two parameters

nstart ¼ f
ðdÞ;1
i;j and nend ¼ f

ðdÞ;2
i;j .

These shutter functions correspond to class ðdÞ in Fig. 3.
In this case, two integers ðnstart; nendÞ, need to be encoded
(and decoded) in a single integer C. This can easily be done
by the use of a pairing function. Thanks to the constraints:
nstart < N and nend < N , one can choose a very simple
pairing, for instance relying on the uniqueness of the euclid-
ean division: C ¼ nstart þ nend �N , the pairing inversion is
nstart ¼ C modN and nend ¼ bC=Nc. An encoding we pro-
pose is

fðdÞðSi;jÞ ¼ nstart þN � nend; (19)

with, nstart ¼
PN�1

n¼1 n �maxðS½n� � S½n� 1�; 0Þ, and, sym-
metrically: nend ¼ �

PN�1
n¼1 n �minðS½n� � S½n� 1�; 0Þ that

both capture the start and end time of the subexposure
bump making use of the sign of the forward difference of
Si;j. This time, the decoding is less trivial, and uses our pair-
ing inversions

gðdÞðCi;j;nÞ ¼ Hðn� Ci;j modNÞ �Hðn� Ci;j=NÞ; (20)

which is very simple to perform in hardware.

4.5 Learning With Non-Differentiable Encoders Sf
When it comes to learning the parameters fi;j of our
encoders, there are two main difficulties to address. A first
challenge is that we consider binary shutter functions.
This is because it simplifies their implementations in

electronic by a simple switch instead of a variable, contin-
uous gain: All the shutter functions we presented imple-
ment some kind of hard thresholding (using Heaviside,
rectangle, or projection functions). A hard threshold does
not yield useful gradients for training. A second, and
major difficulty is that the domain of the parameters f is
discrete: the parameters for all the shutter functions we
presented essentially encode the slot at which sub-expo-
sure bumps start and stop.

In the neural network literature, settings in which the
outputs of neurons (the analog of our shutter functions)
are binary and their weights (the analog of our parameters)
are quantized are more difficult to optimize and require
some tricks, we adopt similar methods to [66], using a real
variable f̂i;j optimized during training and, quantized in
the discrete fi;j during the forward pass as shown in Fig. 4.

4.6 Modeling of the Encoder: Noise and Pixel
Response

Despite the fact we learn the encoder on real data, this
data has not been captured by our sensor. Since we aim
at compiling the shutter functions on our real-system, it is
crucial the encoder trained in simulation models the oper-
ation of our sensor-processor closely enough. In practice,
we consider two aspects: First the pixel response function
is approximately linear and saturates, also it is quantized
(the sensor reports 8-bits images). Second, performance in
the reconstruction is increased when using noise. We
model both the response function of the sensor and noise
in the encoder. Noise is modelled both in the quantization
step of the real parameter we optimize over (modelling
the fact the shutter function might not be realized cor-
rectly), and in the sensor capture (on the incoming irradi-
ance). The implementation of our encoder is illustrated in
Fig. 4.

Fig. 5. HDR results in simulation. On the right pane: the images show ground truths, measurements and reconstructions for different HDR scenes
captured with shutter functions of class ðbÞ in simulation along with some baseline comparisons. The left pane shows other scenes captured with
optimized shutters of class ðbÞ.
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4.7 Neural Network Architectures Dc

We use two types of DNN models implementing Dc

through our experiments: Fully-Connected Neural Net-
works (FC-nets) as well as Convolutional Neural Networks
(CNNs) architectures.

Setup for Fully-Connected Networks. A major challenge
in using FC-nets is to keep the number of parameters rea-
sonable. Concretely, for a M ¼ R� C coded exposure pro-
duced by our sensor, the first layer of the FC-net would
need to contain R � C input neurons, while the output
would need to consist of M �N ¼ R � C �N neurons, which
means the network has R2 � C2 �N parameters not even
assuming a hidden layer! For a modest size 256� 256 image
using 16slots this is already 69 million parameters, which is
prohibitively high. Therefore, one cannot consider whole
images as inputs of a FC-net. Instead, to reduce the number
of parameters we consider chopping the image in smaller
patches of size Wp �Hp. To avoid blocky artifacts that
would be created by having each patch reconstructed inde-
pendently from its neighbour, we learn our network on a
small tiling of these patches Np �Wp �Np �Hp. For
instance, considering 8� 8 patches, and a tiling of 2 patches
in each dimension, we obtain a 16� 16 block. The FC-net is
learned on these blocks, and at reconstruction can be evalu-
ated on each block dividing a whole image, shifted by the
size of a patch. Each patch (apart from the borders) is cov-
ered by Np �Np overlapping blocks and thus benefits from
Np �Hp reconstructions that can be averaged together and
thus vary smoothly over the image. A similar approach is
taken in [32].

As a consequence, the parameters f of the encoder also
need to be shared for each patch. Hence using FC-nets one
can only implement Wp �Hp different shutter functions Si;j

(that are all different within a patch), thus under-using our
sensor-processor that can implement independent pixel-
wise exposures for a whole array.

Setup for Convolutional Neural Networks. Another
way to reduce the number of parameters of our model is to
use built-in weight sharing via convolutional architectures.
The main challenge when using CNN based architectures—

that have proven to work well in the problems of image
reconstruction, such as U-Nets [67]—is to match their inputs
and outputs so they can learn the correlations existing
between them in the space they live in. Specifically, in the
high-speed imaging learning scenario, the input is a two-
dimensional coded exposure image, while the output is a
three-dimensional (two dimension and time) sequence of
images. This setting does not “naturally” lends itself to 2D
U-Nets, and would ignore correlations across one of the
dimensions (for instance time if the two first dimensions are
the space dimensions). Hence we lift-up the input coded
exposure image in three dimensions, by copying it in time
(acting like a blur) and applying the shutter function to the
obtained volume. This is a typical trick that can be shown to
be equivalent to applying the transpose of the measurement
matrix to the measurement: L̂ ¼ SE. This is now given as an
input to a 3D U-Net, that sees a blurry volume with “holes”
where data was not captured.

5 RESULTS

5.1 HDR Imaging

For our experiments in simulation we use 277 irradiance
images extracted from HDR Haven (https://hdrihaven.
com), rescaled to a size of 1024� 512 using bilinear down-
sampling. For evaluation, 28 are randomly selected among
those. The remaining images are used for training the 2D U-
Net (6 double conv. layers Conv/ReLU/Conv/ReLU, with
3� 3 kernels, split by avg. pooling in the downsampling
branch and bilinear upsampling in the upward branch, the
number of kernels starts at 32 up and grows up to 1024 in
each layer with a growth factor of 2). We feed randomly
cropped 256� 256 sub-images (our sensor size) as input to
the encoder implementing shutter functions of class ðbÞ.
Inputs are augmented with different contrast, brightness,
rotations and flips in space. Those networks are trained
with ADAM [68], on an L1 loss computed between the
ground truth HDR images and the HDR output of the net-
work (not tone mapped), training details are given in our
supplemental, which can be found on the Computer Society

Fig. 6. Video compressive sensing results in simulation. These images show individual coded images (measurements) along with the reconstructed
video clips for several high-speed scenes in simulation, using shutter functions of class ðcÞ and ðeÞ.
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Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2020.2986944. Qualitative results for HDR
imaging are shown in Fig. 5.

Table 2 shows quantitative comparisons of several
snapshot HDR approaches. Random optical codes with a
convolutional sparse coding (CSC) reconstruction algo-
rithm [23] improve upon the conventional LDR baseline.
Random pixel exposures with our U-Net reconstruction
show further improvements over CSC. Note that the
insight that random coding with a neural network–based
reconstruction outperforms other snapshot approaches
was also recently made in [24]. Finally, our pixel expo-
sures, learned end-to-end with the U-Net, perform best in
this experiment, outperforming the best random approach
by about 3dB.

In related work [36], the same sensor–processor imple-
ments on-sensor tone mapping resulting in an 8-bit LDR
image. The LDR image it captures cannot be directly com-
pared with the HDR reconstruction technique presented
here, although our results could also be tone mapped.

5.2 Video Compressive Sensing

For high-speed imaging, we train shutter functions of class
ðcÞ, ðdÞ, and ðeÞ jointly with their decoders with the Need
For Speed dataset [69] using the 100 videos captured at

240FPS. Among those, 10 are randomly selected for evalua-
tion. We trained both FC-nets (4 FC layers of size 4,096) and
3D U-Nets (5 double conv. layers Conv/ReLU/Conv/
ReLU, with 3� 3� 3 kernels, split by avg. pooling in the
downsampling branch and bilinear upsampling in the
upward branch, number of kernels starting at 24 up to 768
with a growth factor of 2 in each layer) as decoders, on the out-
put of the encoders of the various shutter classes. Inputs are
12.5 million randomly selected 16� 16� 16 blocks in the FC-
net and full 256� 256� 16 images in the U-Net. Blocks and
images are augmented with rotations and flips in space, and
time-reversal. The networks are trainedwithADAM [68], opti-
mizing an L1 loss on the discrepancy between ground-truth
and reconstructed blocks (for FC-net) and video-clip / space-
time volumes (for 3D U-Nets). Other training details are given
in our supplemental, available online. Results comparing opti-
mized and non optimized codes across different shutter clas-
ses are shown in Figs. 6, 7, 8 and summarized in Table 3. We
also present quantitative comparisons to various baselines in
Table 4. Notably, we evaluate the coded exposures of Hitomi
et al. [9] performed with random codes and sparse coding
reconstructions, on a random subset of 200 videos of our test
set. For a fair comparison, we use the “single bump” shutter
functions of class (c), as described in [9].We also show a com-
parison to both “thin out” and “bilinear” baselines. The
thinned out baseline considers the high-speed ground truth
video and subsamples it in space as much as it is “super-
resolved” in time. This emulates a camera running at high-
speed and reading out only a subset of pixels so as to keep
the amount of data it would need to transmit constant: Con-
cretely the reconstruction of 16 frames in a space-time vol-
ume is simulated by subsampling each spatial dimension of
a ground-truth frame by 4 before upsampling the frame
again in the reconstruction. This process involves no coding.
The “bilinear” baseline, simply inpaints themissing informa-
tion in the randomly coded space-time volume (before inte-
gration) by bilinear interpolation. Qualitative comparisons
and additional details of these baselines are discussed in the
supplemental material, available online.

6 DISCUSSION

We presented a method and a system to perform HDR
imaging and video compressive sensing with coded pixel

Fig. 7. Examples of non-optimized and optimized shutter functions.
Different classes of shutter functions are shown for different pixels,
when optimized and non-optimized. For functions of class ðbÞ we encode
in a grey level image the stopping time of the integrations. For all
the other classes we choose a subset of 8� 8 pixels for which we show
the shutter functions in time: black means the pixel is ‘off’, white it is ‘on’.

TABLE 3
Results for Video Compressive Sensing

Experiment Shutter

class

PSNR

(dB)

SSIM

FC-net

non-optimized structured code ðcÞ 27.73 0.9445

optimized structured code ðcÞ 27.78 0.9449

non-optimized structured code ðdÞ 27.85 0.9443

optimized structured code ðdÞ 28.16 0.9449

non-optimized random-code ðeÞ 28.02 0.9430

optimized random-code ðeÞ 28.78 0.9502

3D U-Net

non-optimized structured code ðcÞ 32.67 0.9225

optimized structured code ðcÞ 32.87 0.9272

non-optimized random-code ðeÞ 32.19 0.9254

optimized random-code ðeÞ 33.56 0.9374

We compare PSNR, SSIM for non-optimized and optimized codes of different classes.

TABLE 2
Results for HDR Imaging

Experiment Shutter
class

PSNR
(dB)

SSIM

no-coding, LDR - 13.65 0.2834
random code + CSC [23] ðbÞ 28.71 0.6476
random code + U-Net ðbÞ 32.76 0.8904
optimized code + U-Net (ours) ðbÞ 35.42 0.9464

We compare PSNR, SSIM for non-optimized and optimized codes of different classes.
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exposures that can be learned. We think the end-to-end
learning of the components of the imaging pipeline is a
useful paradigm, ultimately these components should all
be jointly considered and their design should rather be
derived from principles that aim at optimizing a given
task or objective. This is in line with the idea of the pur-
posive camera: the next generation cameras might be
learned end-to-end to fulfil a particular task. This being
said it is not clear this camera will be a camera at all
(in the sense that it reports images), we advocate the idea
of sensors that report visual codes, for instance coded
exposures. Therefore, the question to ask is, for a given
task: what is the right visual code? That is, how to cap-
ture light (under some hardware constraints) and what is
the format it should report, that is not necessarily digest-
able by a human but can be efficiently decoded with
some algorithm, that has been jointly optimized to read
those and produce human interpretable information.

A current limitation of this framework is adaptivity.
Even though the exposure program has been learned on
examples, it does not change in a scene dependent fashion.
Since processing and sensing are collocated they could
influence each other, based on what is being captured. This
is supported by our hardware and is, we think, an impor-
tant future research direction.

On the hardware side, we imagine general purpose
programmable sensor processor such as SCAMP-5 to
spread in the computational photography and imaging
communities. Those offer the flexibility of programming
low-level hardware features and close the gap between
short development cycles on the algorithmic side when
one aims at prototyping a new idea and long VLSI sen-
sor and processor design cycles. This is at the expense
of specificity: a programmed sensor processor is not as
optimized for any given task as a Application Specific
Integrated Circuit (ASIC) would be. Nevertheless, those
programmed sensor-processor could be starting points
for the design of ASIC, keeping the hardware features
used for a given task, optimizing them while crippling
them from the unused ones.
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