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“A futuristic cyberpunk 
cityscape with towering neon-
lit skyscrapers, flying cars…”

Figure 1: This state-of-the-art report discusses the theory and practice of diffusion models for visual computing. These models have recently
become the de-facto standard for image, video, 3D, and 4D generation and editing. Images adapted from [PJBM22, DMGT23, SSP∗23b,
MSP∗23, BTOAF∗22, HTE∗23, Lab23, PW23, RLJ∗22, MPE∗23, Arn23] ©2023 IEEE.

Abstract
The field of visual computing is rapidly advancing due to the emergence of generative artificial intelligence (AI), which unlocks
unprecedented capabilities for the generation, editing, and reconstruction of images, videos, and 3D scenes. In these domains,
diffusion models are the generative AI architecture of choice. Within the last year alone, the literature on diffusion-based
tools and applications has seen exponential growth and relevant papers are published across the computer graphics, computer
vision, and AI communities with new works appearing daily on arXiv. This rapid growth of the field makes it difficult to keep
up with all recent developments. The goal of this state-of-the-art report (STAR) is to introduce the basic mathematical concepts
of diffusion models, implementation details and design choices of the popular Stable Diffusion model, as well as overview
important aspects of these generative AI tools, including personalization, conditioning, inversion, among others. Moreover,
we give a comprehensive overview of the rapidly growing literature on diffusion-based generation and editing, categorized
by the type of generated medium, including 2D images, videos, 3D objects, locomotion, and 4D scenes. Finally, we discuss
available datasets, metrics, open challenges, and social implications. This STAR provides an intuitive starting point to explore
this exciting topic for researchers, artists, and practitioners alike.

CCS Concepts
• Computing methodologies → Computer graphics; Neural networks;

1. Introduction

For decades, the computer graphics and 3D computer vision com-
munities have been striving to develop physically accurate models

to synthesize computer-generated imagery or infer physical prop-
erties of a scene from photographs. This methodology, which in-
cludes rendering, simulation, geometry processing, and photogram-



2 R. Po & W. Yifan & V. Golyanik et al. / State of the Art on Diffusion Models for Visual Computing

metry, forms a cornerstone of several industries including visual
effects, gaming, image and video processing, computer-aided de-
sign, virtual and augmented reality, data visualization, robotics, au-
tonomous vehicles, remote sensing, among others.

The emergence of generative artificial intelligence (AI) marks
a paradigm shift for visual computing. Generative AI tools enable
the generation and editing of photorealistic and stylized images,
videos, or 3D objects with little more than a text prompt or high-
level user guidance as input. These tools automate many laborious
processes in visual computing that had previously been reserved
for experts with specialized domain knowledge, making them more
broadly accessible.

The unprecedented capabilities of generative AI have been un-
locked by foundation models for visual computing, such as Stable
Diffusion [RBL∗22], Imagen [SCS∗22], Midjourney [Mid23], or
DALL-E 2 [Ope23a] and DALL-E 3 [Ope23b]. Trained on hun-
dreds of millions to billions of text–image pairs, these models have
“seen it all” and, with an estimated few billion learnable parame-
ters, are extremely large. After being trained on a massive cloud
of high-end graphics processing units (GPUs), these models form
the foundation of the aforementioned generative AI tools. The net-
works commonly used for image, video, and 3D object genera-
tion are typically variants of convolutional neural network (CNN)–
based diffusion models that are combined in a multi-modal man-
ner with text computed via transformer-based architectures, such
as CLIP [RKH∗21].

While much of the successful development and training of foun-
dation models for 2D image generation has come from well-funded
industry players using a massive amount of resources, there is still
room for the academic community to contribute in major ways to
the development of these tools for graphics and vision. For in-
stance, it is not clear how to extend existing image foundation
models to other, higher-dimensional domains, like video and 3D
scene generation. This is largely due to the lack of certain types of
training data. The web, for example, contains billions of 2D im-
ages but much fewer instances of high-quality and diverse 3D ob-
jects or scenes. Moreover, it is not obvious how to scale 2D image
generation architectures to handle higher dimensions, as required
for video, 3D scene, or 4D multi-view-consistent scene generation.
Another example of an existing limitation is computation: diffu-
sion models are rather slow at inference time due to the large size
of their networks and their iterative nature, and even though mas-
sive amounts of (unlabeled) video data exists on the web, current
network architectures are often too inefficient to be trained in a
reasonable amount of time or on a reasonable amount of compute
resources.

Despite the remaining open challenges, recent developments
have spurred an explosion of diffusion models for visual comput-
ing over the last year (see representative examples in Fig. 1). The
goals of this state-of-the-art report (STAR) are to introduce the fun-
damentals of diffusion models, to present a structured overview of
the many recent works focusing on applications of diffusion models
in visual computing, and to outline open challenges.

This STAR is structured as follows: Sec. 2 outlines the scope and
refers interested readers to surveys on closely related topics that
are not covered here; Sec. 3 gives an overview of the mathematical

foundations of 2D diffusion; Sec. 4 discusses the challenge of mov-
ing beyond 2D images towards video, 3D, and higher-dimensional
diffusion models; Sec. 5 outlines approaches to diffusion-based
video synthesis and editing; Sec. 6 summarizes recent approaches
to 3D object and scene generation; Sec. 7 includes a discussion on
4D spatio-temporal diffusion for multi-view consistent video, hu-
man motion and scene generation (e.g., using parametric human
body models); Sec. 8 includes a brief discussion on available train-
ing data; Sec. 9 reviews metrics used for various generated content;
Sec. 10 outlines open challenges; Sec. 11 discusses societal impli-
cations and ethical concerns; and Sec. 12 concludes the STAR.

2. Scope of this STAR

In this STAR, we focus on recent advances in applications of diffu-
sion models in visual computing. Specifically, we discuss the role
of diffusion models in the context of generating and editing im-
ages, videos, 3D objects or scenes, and multi-view consistent 4D
dynamic scenes. We start by laying down the mathematical un-
derpinnings of diffusion models. This includes a brief introduc-
tion to the general diffusion process as applied to 2D images. We
then delve into how these techniques enable generative modeling of
high-dimensional signals, as we provide a comprehensive overview
of the leading methodologies of diffusion models for video, 3D and
4D data. This report aims to highlight techniques leveraging diffu-
sion models to tackle problems on data beyond the image domain.
With that in mind, we do not cover each and every method only
applicable to 2D data. We also do not discuss works that leverage
generative pipelines other than diffusion models.

Related Surveys. Other generative methods, such as GANs, are
closely related to diffusion models. However, we consider them to
be beyond the scope of this report. We refer readers to [GSW∗21]
for an in-depth discussion on GANs and [BTLLW21, LZW∗23,
SPX∗22] for a broader review of other generative methods, or the
use of different generative model architectures for multi-modal im-
age synthesis and editing [ZYW∗23]. Recently, the term founda-
tion model has become analogous to a diffusion model trained on
internet-scale data image [RBL∗22]. While this report discusses
methods that leverage such models, please refer to [BHA∗21] for
an introduction and overview of foundation models in the context
of natural language processing, visual computing, and other do-
mains. Last but not least, the explosive advances in text-to-image
(T2I) generation has led to an intrinsic link between large language
models (LLMs) and diffusion models; interested readers can refer
to [ZZL∗23] for a comprehensive survey on LLMs.

Selection Scheme. This report covers papers published in the pro-
ceedings of major computer vision, machine learning, and com-
puter graphics conferences, as well as preprints released on arXiv
(2021–2023). The authors of this report have selected papers based
on their relevance to the scope of this survey, as we aim to provide
a comprehensive overview of the rapid advances in diffusion mod-
els in the context of visual computing. However, though this report
serves as a list of state-of-the-art methods in a specific domain, we
do not claim completeness and highly recommend that readers refer
to cited works for in-depth discussions and details.
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Figure 2: Diffusion Process. (A) The forward SDE transforms im-
ages to noise. The forward SDE can be reversed [And82] if we
can predict the score function, enabling image synthesis. (B) The
distributions of images and noise are linked with stochastic trajec-
tories, modeled by SDEs, and deterministic trajectories, modeled
by a probability flow ODE. Figures adapted from [SSDK∗20].

3. Fundamentals of Diffusion Models

In this section, we give a concise overview of the fundamentals
of diffusion models. We introduce the mathematical preliminaries,
discuss a practical implementation using the popular Stable Diffu-
sion model as an example, and then overview important concepts
for conditioning and guidance, before discussing concepts related
to inversion, image editing, and customization. This section cov-
ers a large amount of references, so we focus on giving the reader
a clear and high-level overview of the most important concepts of
diffusion-based generation and editing in the context of 2D images.

3.1. Mathematical Preliminaries

Assume we are given a training dataset of examples where each
example in the data is drawn independently from an underlying data
distribution pdata(x). We desire to fit a model to pdata(x) so that we
can synthesize novel examples by sampling from this distribution.

The general idea behind inference with denoising diffusion mod-
els is to sequentially denoise samples of random noise into sam-
ples from the data distribution. Consider a range of noise levels,
σmax > .. . > σ0 = 0, and the corresponding noisy image distribu-
tions p(x,σ) defined as the distribution of adding Gaussian i.i.d.
noise with variance σ

2 to the data. For sufficiently large σmax, the
noise almost completely obscures the data and p(x,σmax) is practi-
cally indistinguishable from Gaussian noise. Thus, we can sample
an initial noise image xT ∼N (0,σ2

max) and sequentially denoise it
such that at every step, xi ∼ p(x,σi). The endpoint of this sampling
chain, x0 is distributed according to the data.

However, instead of thinking about the denoising through a dis-
crete collection of noise levels, it is useful to think of the noise

level as a continuous, time-dependent function σ(t) (a common
choice is σ(t) = t). The noisy image sample x can move contin-
uously through noise levels, following a trajectory—either forward
in time, gradually adding noise, or backwards in time, gradually
removing noise (see Fig. 2 (B)).

Song et al. [SSDK∗20] introduce a stochastic differential equa-
tion (SDE) framework to model these trajectories. Ordinary differ-
ential equations give us tools to solve initial value problems – given
an initial state and a differential equation that describes a function,
we can solve for the function at a different time. As an example,
given an object’s initial position and known velocity, we can solve
for the object’s position at any time in the future. As Fig. 2 (A) de-
picts, in much the same way, noising an image can be thought of
as picking an initial image x0 from the image domain and solving
a differential equation forwards in time; denoising an image can be
thought of as picking an initial noise image xT ∼ N (0,σ2

max) and
solving a differential equation backwards in time.

The gradual corruption of an image with noise over time is a dif-
fusion process that can be modeled by an Itô stochastic differential
equation (SDE; Eq. 1) [Itô50, Itô51], where f(·, t) : Rd → Rd is a
vector-valued function known as the drift coefficient, g(·) : R→ R
is a scalar-valued function known as the diffusion coefficient, and
w is the standard Wiener process:

dx = f(x, t)dt +g(t)dw. (1)

Implementing a diffusion model requires selecting f and g, and
several specific choices have been explored by [SSDK∗20]. The

choices of f(x, t) = 0 and g(t) =
√

2σ(t) dσ(t)
dt yield an SDE that

describes noising an image by adding Gaussian noise of variance
σ

2(t). This SDE is known as the Variance Exploding SDE (Eq. 2),
so-called because the variance continuously increases with increas-
ing t. Noising an image can be thought of as selecting an initial
clean image and solving Eq. 2 forward in time as

dx =

√
2σ(t)

dσ(t)
dt

dw. (2)

The Variance Exploding SDE has the closed-form solution

p(xt |x0) =N
(

xt ;x0,
[
σ

2(t)−σ
2(0)

]
I
)
. (3)

In other words, to obtain a noisy image at timestep t, all we need to
do is add Gaussian noise of variance σ

2(t)−σ
2(0).

The work of Anderson [And82] enables the discovery of an SDE
that reverses a diffusion process. Applied to Eq. 2, this produces a
reverse-time SDE

dx =−2σ(t)
dσ(t)

dt
∇x log p(x;σ(t))dt +

√
2σ(t)

dσ(t)
dt

dw. (4)

In Eq. 4, ∇x log p(x;σ(t)) is known as the score function, a vec-
tor field that points towards regions of higher data likelihood. To
solve Eq. 4, we need to predict the score function with a neural
network. Remarkably, for a denoiser function D that minimizes
the L2 denoising error Ey∼pdataEn∼N (0,σ2I)∥D(y+n;σ)− y∥2

2, the
score function can be easily obtained from the model output as
∇x log p(x;σ(t)) = (D(x;σ)− x)/σ

2. This means that by simply
training a model to denoise images, we can extract a prediction of
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the score function. This is known as Denoising Score Matching and
the above relationship was derived by [Vin11]. Note that it is com-
mon to parameterize the neural network with parameters φ or θ, as a
noise-prediction network ϵφ, rather than as a denoiser Dθ; however,
each is easily recoverable from the other as ϵφ(x;σ) = x−Dθ(x;σ).

In order to sample an image, we need only start with some ini-
tial xT ∼N (0,σ2

maxI) and we can solve Eq. 4 backwards in time to
arrive at a sample from the pdata(x). However, as is the case with or-
dinary differential equations (ODE), only a small subset has closed-
form solutions. Fortunately, as an alternative, we can approximate
the solution to the SDE numerically.

Euler–Maruyama (Alg. 1) is an algorithm for approximating
numerical solutions to SDEs. It is a simple extension of Euler’s
method, which is the most basic numerical ODE solver, and a
technique with which many will be familiar. Like Euler’s method,
Euler–Maruyama approximates a trajectory by taking small steps
tangent to the trajectory. Smaller steps enable approximation with
greater precision. The sampling techniques of many common dif-
fusion models [SSDK∗20, SME20, ND21] can be viewed as modi-
fications of Euler–Maruyama.

Algorithm 1 Euler–Maruyama Approximation

Input: An SDE of the form dx = a(x, t)dt + b(x, t)dw; an initial
condition x0; a time interval [0,T ]. A finite number of subin-
tervals N.

Output: A simulated trajectory {x̂0, x̂1, . . . , x̂N−1}.
1: Initialize: Partition the time interval [0,T ] into N equal sub-

intervals τ0 < τ1 < ... < τN , where τi+1−τi = ∆t = T/N; x̂0 =
x0; n = 0.

2: while n < N do
3: x̂n+1 = x̂n +a(x̂n,τn)∆t +b(x̂n,τn)∆wn,
4: where ∆wn = wτn+1 −wτn

5: n = n+1.
6: end while

Viewing image synthesis with diffusion models through the lens
of numerical SDE solvers can give us intuition about the behav-
ior of different sampling schemes and some insight into how some
works have improved the computational efficiency of generating
images. Empirically, we observe that generating high-quality im-
ages with diffusion models requires many (often hundreds) of it-
erations; fewer iterations produce poor samples. In the language
of numerical differential equation solvers, poor quality results
with few iterations is a result of truncation error—the smaller we
make our timesteps ∆t, the more accurate our numerical approx-
imation. For the same reason, higher-order differential equation
solvers [KAAL22, DVK22] can reduce the error in our numerical
approximation, allowing us to sample with greater accuracy or en-
abling equal quality with fewer network evaluations.

For any diffusion process, there exists a corresponding determin-
istic process, which can be described by an ODE, that recovers the
same marginal probability densities p(x,σ). Song et al. [SSDK∗20]
define an ODE that describes the deterministic process and name it
the probability flow ODE (Eq. 5, Fig. 2b):

dx =

[
f(x, t)− 1

2
g(t)2∇x log p(x;σ(t))

]
dt. (5)

This probability flow ODE enables deterministic image
synthesis—instead of sampling random noise and simulating the
reverse-time SDE to synthesize images, we can instead sample
random noise and solve the reverse deterministic probability-flow
ODE; doing so recovers the same distribution of images. Unlike
stochastic sampling, where the final image is determined both by
the initial noise image xt and noise injected at every iteration (cor-
responding to the dw term in Eq. 4), an image created determinis-
tically is defined only by the initial noise.

But we can also do the reverse: Instead of sampling noise and
producing an image, we can draw an arbitrary image and fol-
low the forward probability flow ODE to encode the image into
noise. In fact, the probability flow ODE defines a bijective map-
ping between images and (noisy) latents. With sufficient accuracy
in the ODE solver, one can encode an image into latent space by
solving the probability flow ODE forward in time, arrive at a la-
tent xT , and solve the probability flow ODE backwards in time
to recover the original image. Moreover, one can edit an image
by manipulating the corresponding latent. For example, interpo-
lation in latent space may produce a compelling interpolation in
image space, and scaling the latent can influence the temperature
of the generated image [SSDK∗20]. Several recent image editing
works are built on the premise of a deterministic mapping be-
tween images and latents, and rely on the forward probability flow
ODE to map real images into the latent space of diffusion mod-
els [HMT∗22, MHA∗23, SSME22].

Another advantage of deterministic sampling is that the prob-
ability flow ODE can also often be solved sufficiently accurately
with fewer iterations [SSDK∗20, SME20] of a numerical solver
than the corresponding SDE; as a result, deterministic sampling
may produce high-quality images with fewer network evaluations
than stochastic sampling, accelerating inference.

Despite these advantages, stochastic sampling is still often pre-
ferred over deterministic sampling when many (generally hundreds
to thousands) of denoising iterations are available, and image qual-
ity is paramount. Intuitively, stochasticity can be seen as a cor-
rective force that repairs errors made earlier in sampling. Thus,
stochastic samplers, when combined with many denoising itera-
tions, often produce images that evaluate best according to metrics.

Karras et al. [KAAL22] illustrate this by decomposing the
reverse-time SDE into the sum of a probability flow ODE, which
deterministically moves a sample between noise levels, and a
Langevin diffusion SDE, which stochastically “churns” a sample at
a fixed noise level by adding and removing a small amount of noise.
Here, the Langevin diffusion SDE, i.e., the stochasticity compo-
nent, pushes a sample towards the marginal distribution p(x,σ),
correcting errors that may have been carried over in the purely de-
terministic setting. In practice, deterministic sampling and stochas-
tic sampling have specific strengths and weaknesses, and the level
of stochasticity that works best will depend on the task.
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3.2. Latent Diffusion using the Stable Diffusion Model

Unlike generative models such as Variational Autoencoders (VAEs)
or Generative Adversarial Networks (GANs), which generate im-
ages through a single forward pass, diffusion models necessitate
recurrent forward passes. This characteristic imposes a higher com-
putational burden during training, as the model must learn denois-
ing across multiple noise scales. Additionally, the iterative nature of
the multi-stage denoising process elongates inference time, making
diffusion models computationally less efficient than their genera-
tive counterparts [KAAL22].

Generating high-resolution images with diffusion models is of-
ten infeasible on consumer-grade GPUs due to the excessive mem-
ory requirements. Even on high-end GPUs, the constraints on batch
sizes prolong the training process, making it impractical for a large
segment of the research community.

Perceptual Image Compression. To address these challenges,
Rombach et al. [RBL∗22] introduced latent diffusion models that
operate in a compressed latent space, rather than directly on im-
age pixels. This approach retains perceptually relevant details while
significantly reducing computational cost. The compressed image
space is obtained using an encoder–decoder architecture. Among
the various techniques, VQ-GAN [ERO21] has emerged as the
most common choice due to its impressive compression ability and
preservation of perceptual quality. These latent diffusion models
(LDMs) consist of a two-stage process: an initial autoencoder for
image reconstruction and a subsequent denoising model operating
on the latent codes, achieving superior performance with reduced
computational demands (see Fig. 3).

Architecture. The architecture proposed by Rombach et al.
[RBL∗22] builds upon the U-Net framework [RFB15, HJA20,
JMPTdCM20]. It incorporates attention mechanisms [VSP∗17],
specifically self-attention and cross-attention blocks, at various
stages of the U-Net. In the self-attention block, features derived
from intermediate U-Net outputs are projected into queries Q, keys
K, and values V. The output of the block is given by:

A ·V where A = Attention(Q,K). (6)

Here, the Attention mechanism captures contextual information be-
tween the d-dimensional Q and V projection matrices via

Attention(Q,K) = Softmax(QKT /
√

d). (7)

Cross-attention blocks operate similarly, enabling controlled gen-
eration by injecting conditioning signals such as text prompts
(see Sec. 3.3).

Retrieval-augmentation Mechanism (RDM). To further opti-
mize computational efficiency, Blattmann et al. [BRO∗22] intro-
duced a Retrieval-augmentation Mechanism (RDM) that fetches
relevant image patches from an external database during the gen-
erative process. These patches are selected based on latent codes
from a pre-trained autoencoder and undergo simple augmentations.
Since details from the retrieved image patches need not be saved in
model parameters anymore, this mechanism leads to a more stream-
lined denoising model and hence accelerates both training and in-
ference, albeit at the cost of added computational complexity and
dependency on a well-trained autoencoder.
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Figure 3: Stable Diffusion. This schematic shows an overview of
the latent diffusion approach, including encoder E , decoder D, and
conditioning using a cross-attention mechanism. Figure adapted
from [RBL∗22].

3.3. Conditioning and Guidance

Conditioning. Perhaps the most important property of a gen-
erative model is the ability to control generation through user-
defined conditions. Such conditions include text [RAY∗16], seman-
tic maps [PLWZ19], sketches [VACO23], multi-modal combina-
tions of conditions [ZYW∗23], and other image-to-image transla-
tion tasks [IZZE18, SCC∗22]. Formally, instead of sampling data
from an unconditional distribution p(x), we would like to sample
from a conditional distribution p(x|c) given some conditioning sig-
nal c.

To accommodate the variety of conditioning modalities, a flex-
ible set of conditioning mechanisms has been developed for dif-
fusion models. The most simple of these methods is concatena-
tion [SCC∗22], where the condition is directly concatenated with
intermediate denoising targets and passed through the score esti-
mator as input. Concatenation can be performed along with the
diffusion model input during different stages of the model architec-
ture. It is also applicable to nearly all conditioning modalities. Most
notably, Palette [SCC∗22] tackles various image-to-image transla-
tion tasks such as in-painting, colorization, uncropping and image
restoration using conditioning by concatenation.

Another effective method is to inject conditioning signals
through cross-attention. Rombach et al. [RBL∗22] modifies the
U-Net architecture [RFB15] for conditioning control with cross-
attention mechanisms. To control the image synthesis, a condi-
tioning signal c, for example a guiding text prompt, is first pre-
processed by a domain-specific encoder τ to an intermediate pro-
jection τ(c). The projected conditioning signal is then injected into
the intermediate layers of the denoising U-Net by means of cross
attention [VSP∗17], via Eq. 7, with

Q = WQ ·ϕ(zt), K = WK · τ(c), V = WV · τ(c), (8)

where WQ,WK ,WV are learnable projection matrices, and ϕ(zt)
represents an intermediate result from the denoising U-Net; see
Fig. 3 for a detailed visualization. Intuitively, Q is the projection
of activations of intermediate U-Net layers, while K and V are ob-
tained via projection of the given condition.

During inference, additional techniques can be applied
to condition the network on different modalities, including
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parameterized models reside in a low intrinsic dimension
subspace [2, 47].

Zero-Initialized Layers are used by ControlNet for con-
necting network blocks. Research on neural networks has
extensively discussed the initialization and manipulation of
network weights [36, 37, 44, 45, 46, 75, 82, 94]. For exam-
ple, Gaussian initialization of weights can be less risky than
initializing with zeros [1]. More recently, Nichol et al. [58]
discussed how to scale the initial weight of convolution lay-
ers in a diffusion model to improve the training, and their
implementation of “zero module” is an extreme case to scale
weights to zero. Stability’s model cards [82] also mention
the use of zero weights in neural layers. Manipulating the
initial convolution weights is also discussed in ProGAN [36],
StyleGAN [37], and Noise2Noise [46].

2.2. Image Diffusion

Image Diffusion Models were first introduced by Sohl-
Dickstein et al. [80] and have been recently applied to
image generation [17, 42]. The Latent Diffusion Models
(LDM) [71] performs the diffusion steps in the latent image
space [19], which reduces the computation cost. Text-to-
image diffusion models achieve state-of-the-art image gen-
eration results by encoding text inputs into latent vectors
via pretrained language models like CLIP [65]. Glide [57]
is a text-guided diffusion model supporting image genera-
tion and editing. Disco Diffusion [5] processes text prompts
with clip guidance. Stable Diffusion [81] is a large-scale
implementation of latent diffusion [71]. Imagen [77] directly
diffuses pixels using a pyramid structure without using latent
images. Commercial products include DALL-E2 [61] and
Midjourney [54].

Controlling Image Diffusion Models facilitate personal-
ization, customization, or task-specific image generation.
The image diffusion process directly provides some control
over color variation [53] and inpainting [66, 7]. Text-guided
control methods focus on adjusting prompts, manipulating
CLIP features, and modifying cross-attention [7, 10, 20, 27,
40, 41, 57, 63, 66]. MakeAScene [20] encodes segmentation
masks into tokens to control image generation. SpaText [6]
maps segmentation masks into localized token embeddings.
GLIGEN [48] learns new parameters in attention layers of
diffusion models for grounded generating. Textual Inver-
sion [21] and DreamBooth [74] can personalize content in
the generated image by finetuning the image diffusion model
using a small set of user-provided example images. Prompt-
based image editing [10, 33, 85] provides practical tools to
manipulate images with prompts. Voynov et al. [87] propose
an optimization method that fits the diffusion process with
sketches. Concurrent works [8, 9, 32, 56] examine a wide
variety of ways to control diffusion models.
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Figure 2: A neural block takes a feature map x as input and
outputs another feature map y, as shown in (a). To add a
ControlNet to such a block we lock the original block and
create a trainable copy and connect them together using zero
convolution layers, i.e., 1⇥ 1 convolution with both weight
and bias initialized to zero. Here c is a conditioning vector
that we wish to add to the network, as shown in (b).

2.3. Image-to-Image Translation

Conditional GANs [15, 34, 62, 89, 92, 96, 97, 98] and trans-
formers [13, 19, 67] can learn the mapping between different
image domains, e.g., Taming Transformer [19] is a vision
transformer approach; Palette [76] is a conditional diffu-
sion model trained from scratch; PITI [88] is a pretraining-
based conditional diffusion model for image-to-image trans-
lation. Manipulating pretrained GANs can handle specific
image-to-image tasks, e.g., StyleGANs can be controlled
by extra encoders [70], with more applications studied in
[3, 22, 38, 39, 55, 59, 64, 70].

3. Method

ControlNet is a neural network architecture that can en-
hance large pretrained text-to-image diffusion models with
spatially localized, task-specific image conditions. We first
introduce the basic structure of a ControlNet in Section 3.1
and then describe how we apply a ControlNet to the image
diffusion model Stable Diffusion [71] in Section 3.2. We
elaborate on our training in Section 3.3 and detail several
extra considerations during inference such as composing
multiple ControlNets in Section 3.4.

3.1. ControlNet

ControlNet injects additional conditions into the blocks of
a neural network (Figure 2). Herein, we use the term network
block to refer to a set of neural layers that are commonly
put together to form a single unit of a neural network, e.g.,
resnet block, conv-bn-relu block, multi-head attention block,
transformer block, etc. Suppose F(·;⇥) is such a trained
neural block, with parameters ⇥, that transforms an input
feature map x, into another feature map y as

y = F(x;⇥). (1)

Figure 4: Overview of ControlNet. ControlNet [ZA23] modifies
existing network architectures by duplicating network blocks and
connecting them through zero convolutions. The auxiliary module
takes some conditioning c, allowing the model to learn additional
control handles.

sketches [VACO23] and spatial layout [ZA23, MWX∗23]. Among
these, adapter methods, exemplified by the popular Control-
Net [ZA23] (see Fig. 4), provide an effective and flexible route to
add new condition modality without altering the pre-trained diffu-
sion model by embedding new module layers into the existing net-
work architecture. Specifically, it proposes a backbone for learn-
ing diverse control handles for large pre-trained diffusion models
through the addition of auxiliary network modules. New network
modules are initialized by duplicating encoding layers from the
pre-trained network and connected to the original model through
“zero-convolutions”, a mechanism that initializes layer parameters
to zero, ensuring that no harmful noise is learned during the fine-
tuning process. The auxiliary network is fine-tuned on a given set
of condition-output pairs, while the original network layers remain
unchanged as illustrated in Fig. 4.

Guidance. While conditioning affords a level of control over the
sampled distribution, it falls short in fine-tuning the strength of the
conditioning signal within the model. Guidance emerges as an al-
ternative, generally applied post-training, to more precisely steer
the diffusion trajectory.

Dhariwal et al. [DN21] observed that an auxiliary classifier can
steer an unconditional generative model. This technique, termed
classifier guidance, alters the original diffusion score by incorporat-
ing the gradient of the log-likelihood from a pre-trained classifier
model pφ(c|x) that estimates c from a given image x. Using Bayes’
theorem, the score estimator for p(x|c) is given by:

∇xt log(pθ(xt)pφ(c|xt)) =∇xt log pθ(xt)+∇xt log pφ(c|xt). (9)

We can then define a new score estimator ε̃(xt) corresponding to
the joint distribution, giving:

ε̃θ(xt ,c) = εθ(xt ,c)−wσt∇xt log pφ(c|xt), (10)

where w is a tunable parameter controlling guidance strength. De-
spite its versatility, classifier guidance has limitations, such as the
need for a noise-robust auxiliary classifier and the risk of poorly
defined gradients due to irrelevant information in xt .

To circumvent the limitations of classifier guidance, Ho and Sal-

imans introduced classifier-free guidance [HS22]. This method di-
rectly alters the training regimen, utilizing a single neural network
to represent both an unconditional and a conditional model. These
models are jointly trained, with the unconditional model parame-
terized by a null token c = ∅. The model can then be sampled as
follows, using the previously introduced guidance scale w:

ε̂θ(xt) = (1+w)εθ(xt ,c)−wεθ(xt ,∅). (11)

Controlling the strength of the conditional signal leads to a trade-
off between diversity and sample quality [HS22]. As guidance scale
w increases, the diversity of the resulting sample decreases in return
for higher sample quality. However, it is often observed that models
trained using classifier-free guidance tend to generate low-quality
samples for very low or high guidance scales. For example, Stable
Diffusion [RBL∗22] generates empty gray images when sampled
using only the unconditional score estimator (w =−1), and outputs
images with saturation artifacts at higher guidance values (w > 10).

3.4. Editing, Inversion and Customization

A pretrained diffusion model essentially provides an expressive
generative prior, which can be leveraged to allow average users to
perform various image manipulation tasks without any experience
on pixel-level crafting skills. Many recent work have investigated
the use of text-to-image diffusion models for editing, and gener-
ation of personalized images, also known as customization. This
section surveys the main works in these two categories, as well as
a crucial technical component, inversion, which is often used as a
building block for editing.

Editing. Owing to its inherently progressive and attention-based
architecture, diffusion models offer a unique platform for fine-
grained image editing by facilitating adjustments to various net-
work phases and components to manipulate both spatial layout and
visual aesthetics. The research trajectory in this domain is geared
towards enhancing editing controllability and flexibility, while si-
multaneously ensuring an intuitive user interface. A prevalent use-
case involves altering the visual attributes of an image while re-
taining its spatial configuration. In this context, SDEdit [MHS∗21]
presents a straightforward approach that introduces a calibrated
level of noise to an image, resulting in a partially-noised image,
followed by a reverse diffusion process with a new conditioning
signal as guidance. This foundational approach has been further ex-
tended by [KKY22] to manipulate global characteristics by direct
text prompt modification, while localized editing is accomplished
through the incorporation of auxiliary masks in the diffusion pro-
cess [ALF22, NDR∗21]. Similarly, an additional guidance signal
(i.e., any gradient function, as a classifier is in classifier guidance)
can be used to modify a sampling trajectory to perform manipula-
tive edits like changing object appearances or rearranging content
in the scene [EJP∗23]. Another editing strategy involves constrain-
ing specific feature maps derived from a different generative pro-
cesses. For example, Prompt-to-Prompt [HMT∗22] employs fixed
cross-attention layers to selectively modify image regions corre-
sponding to specific textual cues. Plug-and-Play [TGBD23] ex-
plores the injection of spatial features and self-attention maps to
maintain the overall structural integrity of the image. [CWQ∗23]
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advocates for leveraging the self-attention mechanism to enable
consistent, non-rigid image editing without the necessity for man-
ual tuning. Moreover, the text prompt itself serves as a criti-
cal determinant of editing quality. Imagic [KZL∗23] refines the
text prompts through an optimization of textual embeddings cou-
pled with model fine-tuning, thereby enabling diverse, spatially
non-rigid image editing. Delta Denoising Score [HACO23] inge-
niously utilizes the generative prior of Text-to-Image (T2I) dif-
fusion models as a loss term in an optimization framework to
guide image transformations based on textual directives. Instruct-
Pix2Pix [BHE23] simplifies the user’s text input from descrip-
tive target image annotations to more intuitive editing directives
by fine-tuning a T2I model on a generated dataset of image pairs
aligned with editing instructions, created using a combination of
Prompt-to-Prompt and a large language model. [PKSZ∗23] obvi-
ates the need for text prompts altogether by introducing an auto-
mated mechanism for discovering editing directions from exemplar
image pairs.

Following similar work in the GAN literature [PTL∗23], a num-
ber of diffusion-based methods aim to perform edits driven by
sparse user-annotated correspondences, where the appearance and
identity of objects are preserved, and only their layout or orienta-
tion are changed [MWS∗23, SXP∗23].

Inversion. Many methods for editing an existing (i.e., real) im-
age through generative models often involve an “inversion” task,
which identifies a specific input latent code or sequence of latents
that, when fed into the model, reproduces a given image. Inver-
sion allows manipulation in the latent space, which enables the
use of generative priors already learned by the model. In the con-
text of diffusion, DDIM inversion [SME20] is a fundamental tech-
nique that adds small noise increments to a given image to approx-
imate the corresponding input noise. When running a reverse dif-
fusion using DDIM with this noise, the original image is repro-
duced. In the case of text-to-image diffusion, when provided with
a specific text–image pairing, the DDIM inversion method tends
to accumulate small errors, especially with classifier-free guid-
ance [HS22]. Null-Text Inversion [MHA∗23] compensates for the
timestep drift by optimizing the input null-text embedding for each
timestep. EDICT [WGN23] achieves precise DDIM inversion us-
ing two coupled noise vectors. [WDlT22] showcased a DDPM-
inversion method, recovering noise vectors for an accurate image
reconstruction within the DDPM sampling framework.

Beyond image-to-noise inversion, in the context of text-to-image
models, “textual inversion” [GAA∗22] offers a framework to con-
vert image(s) into token embeddings. The original work proposed
converting a concept that appears in a few images into a sin-
gle token using optimization. Follow-up works also demonstrated
the inversion of a single image into a token using an encoder
[GAA∗23b], or converting the concept into a sequence of per-layer
tokens to improve the concept’s reconstruction [VCCOA23].

Customization. Recent works have extensively explored the cus-
tomization of T2I diffusion models, i.e., adapt a pretrained dif-
fusion model to generate better outputs for a specific person
or object. The pioneering work DreamBooth [RLJ∗22] achieves
this by optimizing the network weights to represent a subject

shown in a set of images by a unique token. One line of follow-
up works has focused on fine-tuning only specific parts of the
network. CustomDiffusion [KZZ∗23] modifies only the cross-
attention layers, SVDiff [HLZ∗23] refines the singular values of
weights, LoRA [HSW∗21] targets optimizing low-rank approxi-
mations of weight residuals [HSW∗21] and StyleDrop [SRL∗23]
adopts adapter tuning [HGJ∗19] to fine-tune a selected set of
adapter weights for style customization. Similar techniques have
been applied to other problem statements besides text-to-image
generation, such as image inpainting or outpainting [TRC∗23].

Another line of research is dedicated to accelerating the cus-
tomization process. [GAA∗23a] and [WZJ∗23] employ encoders
to determine initial text embeddings and subsequently fine-tune
them to enhance subject fidelity. [RLJ∗23] predicts low-rank net-
work residuals tailored to specific subjects directly. SuTI [CHL∗23]
initially constructs a comprehensive paired dataset using images
and their recontextualized counterparts produced by DreamBooth,
and uses it to train a network that can execute personalized image
generation in a feed-forward manner. InstantBooth [SXLJ23] and
Taming Encoder [JZC∗23] introduce a conditional branch to the
diffusion model which allows conditioning using a minimal set of
images or even just one, facilitating the generation of personalized
outputs in various styles. Break-A-Scene [AAF∗23] customizes a
model to support a few subjects depicted in a single image, while
FastComposer [XYF∗23] leverages an image encoder to project
subject-specific embeddings for multi-subject generation.

4. The Challenge of Moving Beyond Images

Diffusion models have garnered significant attention and success
in the realm of image processing, owing to a confluence of fac-
tors that have made them particularly well-suited for this domain.
One of the primary reasons for their efficacy lies in the maturity
of network architectures tailored for image processing, particularly
in the area of denoising. Diffusion models in the 2D image domain
have capitalized on these advancements, incorporating well-defined
building blocks such as convolutional layers, attention mechanism
and U-Net structures as their backbone. Advances in Transform-
ers [VSP∗17] and large language models [DCLT18] have further
enhanced these models by enabling approximate controllability
through natural language prompts, facilitated by the pairing of im-
ages with text descriptions [RKH∗21].

Moreover, the ubiquity of mobile phones and social norms have
democratized the capture, storage, and sharing of 2D images, re-
sulting in a near-infinite supply of freely available images. In sum-
mary, by the end of the 2010s, all the essential ingredients for
the success of 2D diffusion models were in place: a well-defined
mathematical framework, flexible function approximators capable
of learning expressive image transformations, and an abundant sup-
ply of training data.

Though 2D image synthesis has been blessed by a happy coin-
cidence of technological progress and available data, this has not
been the case for higher-dimensional signals. The task of synthe-
sizing higher-dimensional content, such as video and 3D content,
is substantially more difficult than 2D image synthesis, limited by
a number of additional issues described further in this section.
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Models. The network architecture for processing high-
dimensional data is still an open question. Unlike images,
which can be efficiently represented and processed using discrete
pixel values, higher-dimensional data often require more complex
representations. This complexity is exacerbated by the need to han-
dle long-range information flow, which is critical for understanding
the temporal dynamics in videos or the spatial relationships in
3D structures. As of now, there is no consensus on a network
architecture that can serve as a reliable and scalable backbone
for diffusion models in these domains. The computational and
memory costs associated with processing high-dimensional data
further complicate the issue, making it challenging to find an
efficient yet expressive solution.

Data. The availability and quality of data pose another significant
challenge. For 3D structures, the process of creating a single 3D
model involves multiple steps, including scanning, processing, and
reconstruction, each of which requires specialized expertise and re-
sources. This makes the data acquisition process both time consum-
ing and expensive. In the case of videos—although raw data may
be abundant—annotating these data, especially for capturing mo-
tion and temporal dependencies, is far from trivial. This scarcity
of high-quality annotated data hampers the training of robust and
generalizable diffusion models for higher-dimensional domains.

5. Video Generation and Editing

Despite the tremendous progress in image diffusion models, and
the remarkable breakthroughs in T2I generation, expanding this
progress to the domain of video is still in nascent stages, due to
two main challenges.

First, learning from videos requires orders of magnitude more
data than images, due to the complexity and diversity of our dy-
namic world. While online videos are abundant, curating high-
quality video datasets remains a difficult task that typically involves
significant engineering efforts and requires dedicated automatic cu-
ration tools.

Another substantial challenge arises from the high dimensional-
ity of raw video data (e.g., a two-minute video with 30 fps con-
sists of 3600× more pixels than a single frame). This makes the
extension of 2D architectures to the temporal domain very chal-
lenging and computationally expensive. We next discuss how these
challenges have been tackled in the context of diffusion models for
video generation.

5.1. Unconditional and Text-Conditioned Video Diffusion

There have been significant research efforts in extending diffusion
models to the temporal domain, aiming to capture the vast distri-
bution of natural motion from a large-scale video dataset. Ho et
al. [HSG∗22] introduced the first Video Diffusion Model (VDM),
extending the 2D U-Net backbone to the temporal domain. This
is achieved through factorized space and time modules, enabling
more efficient computation as well as joint training on both in-
dividual images, videos, and text. This approach has been scaled
up by Imagen Video [HCS∗22], a cascaded text-to-video (T2V)

Figure 5: Denoising U-Net with Spatio-temporal Attention. (A)
Common attention U-Net used for the denoising step in image and
video diffusion models comprising residual convolution blocks and
attention blocks as well as concatenated time step and text prompt–
embeddings. Figure adapted from [KDSD23]. (B) Temporal struc-
ture in video diffusion and editing is commonly modeled by adding
1D temporal convolutions in the residual blocks (left) as well as
1D temporal attention blocks after each of the 2D spatial attention
blocks (right). Figure adapted from [ECA∗23].

model with 11 billion parameters, which comprises a low spatio-
temporal resolution base model, followed by multiple cascaded
super-resolution models that increase both the spatial resolution
and the effective framerate. Imagen Video is trained from scratch,
using a large corpus of high-quality video and corresponding cap-
tions as well as a number of text-image datasets.

Aiming to re-use learned image priors for video generation,
Make-A-Video [SPH∗22] builds their framework on a pre-trained
T2I model, extending it to videos by adding spatio-temporal con-
volution and attention layers to the existing T2I model, followed
by spatial and temporal super-resolution models. A key property
of this approach is that each component can be trained separately:
The T2I model is pre-trained over image-text pairs, while the entire
T2V is fine-tuned on a large-scale corpus of unlabeled videos, thus
bypassing the need to have video–caption-paired training data. This
effectiveness of inflating and finetuning a T2I model for video gen-
eration has been also demonstrated in autoregressive Transformer-
based models (e.g., [HDZ∗22]).

These two components—using factorized/separable spatio-
temporal modules (Fig. 5) and building upon a pre-trained text-to-
image model—have been also used to expand an image Latent Dif-
fusion Model (LDM), e.g., Stable Diffusion [RBL∗22], to videos,
i.e., learning the video distribution in a low-dimensional space (e.g.,
[BRL∗23, LCW∗23, ZWY∗22, WYC∗23]). Here too, compared to
vanilla Video Latent Models (e.g., [HYZ∗22,YSKS23]), leveraging
a pre-trained image model allows efficient training (with less data),
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while harnessing the rich 2D priors learned by T2I LDMs. Another
advantage of this approach is the ability to transfer the learned mo-
tion modules to other image models derived from the same base
T2I. For example, plugging in a personalized tuned version of the
T2I model thus synthesizing videos in a specific style or depicting
specific objects [BRL∗23, GYR∗23].

As illustrated in Fig. 5, the factorized spatio-temporal modules
expand both the convolutional block by a 1D convolution in time
and also the self-attention block to model dynamics. A common ap-
proach to “inflating” self-attention (see Sec. 3) to multiple frames,
aka extended or cross-frame attention, expands the self-attention
across all or a subset of the frames of a video as

Softmax

Qi
[
K1, . . . ,KI

]T

√
d

 ·
[
V1, . . . ,VI

]
, (12)

where Qi,Ki,Vi are the queries, keys, and values of frame i =
{1 . . . I}. This inflation mechanism is prevalent among many meth-
ods discussed in this section. While it promotes temporal consis-
tency, it does not guarantee it.

Other approaches for video generation include
MCVD [VJMP22], which autoregressively generates videos
in a 3D latent space by conditioning new frames on previously
generated ones; VideoFusion [LCZ∗23], which decomposes the
noisy video latents into the sum of a (static) base noise shared
across all frames, and a (dynamic) residual per-frame noise; and
Generative Image Dynamics [LTSH23], which instead of directly
predicting video content, learns to generate motion trajectories for
pixels in an image, such that images can be animated to arbitrary
length videos with oscillating motion.

5.2. Controlled Video Generation and Editing

Similar to images, an important aspect in harnessing diffusion mod-
els for real-world content creation tasks, is the ability to provide
users with controls over various attributes of the generated content,
ranging from texture/appearance to editing motion and actions in
video. While powerful methods have been developed to control var-
ious image attributes in T2I models, video editing poses additional
challenges. First, any edit has to be applied in a consistent manner
to all video frames. Second, while the community has developed
rich and powerful representations for “static image attributes”, the
question of how to represent motion and time-varying signals in
videos still remains open.

Conditional Video Models. One approach for controlled video
generation is to design and train a conditional video model that
directly takes control signals as input. Most existing works have
been focused on video-to-video translation, where the overall mo-
tion and layout are extracted from a driving video. For instance,
Runway’s Gen-1 model [ECA∗23] takes as input per-frame depth
maps, which control the spatial layout of each frame, and a CLIP
embedding, which controls the global appearance and semantic
content of the video. Control-A-Video [CWX∗23] and VideoCom-
poser [WYZ∗23] enable video generation conditioned on various
other image-space control signals, such as edge maps, sketches

“A robot spinning a shiny silver ball”

In
pu

t
 V

id
eo

D
ep

th
co

nd
iti

on
 

Im
ag

e
co

nd
iti

on
 

“...Autumn girl walking in city park” 

Ed
ite

d
 V

id
eo

G
en

er
at

ed
 V

id
eo

Zero-Shot (TokenFlow)  

Large-Scale (VideoComposer)  

Figure 6: Text-driven video editing. Top: Given an input video,
TokenFlow [GBTBD23]—a zero-shot method that leverages a pre-
trained T2I model—enables consistent editing according to a given
text prompt. Bottom: VideoComposer [WYZ∗23]—a conditional
video diffusion model trained on a large-scale video dataset—
enables various controls, including conditioning video generation
on a given image and per-frame depth maps.

or pose, by extending ideas from controlled image generation
to the realm of videos [ZA23, HCL∗23]. All the above models
are based on inflated T2I models, which typically incorporate
additional temporal layers, and are trained on large-scale video
datasets. Similar concepts have been explored for more limited do-
main videos, for example models aimed at animating videos of
humans, conditioned on an input image and a sequence of tar-
get poses [KHWKS23]. MagicEdit [LYZ∗23] proposes a modular
framework, which only trains the added temporal layers and not
the pre-trained T2I model. Similar to AnimateDiff [GYR∗23], this
enables plugging the trained temporal layers into a given condi-
tional T2I model (e.g., ControlNet [ZA23]) for controllable video
generation. Make-it-4D [SLS∗23] syntheses long-term videos con-
ditioned on a single image in- and outpainted with a pre-trained
diffusion model. The method leverages layered depth images, i.e.
representation that ensures the global video consistency.

Few-shot Methods for Video Editing. On the other side of the
spectrum, a surge of methods suggest to leverage a pre-trained
T2I model in a one-shot setting, i.e., by fine-tuning on a single
test video (e.g, [WGW∗22, LZL∗23c]), or in a zero-shot setting,
i.e., given no additional training data (e.g., [QCZ∗23, CHM23,
KMT∗23, GBTBD23, FAKD23]).

For instance, Tune-A-Video [WGW∗22] observes that simply
extending the spatial self-attention in the T2I model from one im-
age to multiple images produces consistent content and appearance
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across the generated images. Based on this finding, they design an
inflated version of the T2I model, and finetune it on the test video.
At inference, given a text prompt, the model can be used to change
the object category or stylize the video.

While tuning a T2I model on a single video yields surprisingly
promising results, it is prone to overfitting (i.e., forgetting the T2I
prior) and demands costly computation, limiting its use to generat-
ing text-driven variations of short, sub-sampled clips. Alternatively,
a surge of video editing methods leverage a T2I model in a zero-
shot fashion, by directly manipulating its internal features. Fol-
lowing feature-based image editing methods [TGBD23,HMT∗22],
Fate-Zero [QCZ∗23] extracts the attention maps from an input
video, and injects them into the T2I model during the genera-
tion of the edited video; this operation allows them to preserve
the spatial layout of each frame, as discussed in Sec. 3; appear-
ance consistency is achieved by extending the self-attention to
operate on multiple frames, as in [WGW∗22]. Concurrent works
[CHM23, KMT∗23] combine the self-attention extension with a
conditional T2I (e.g, ControlNet [ZA23]), thus allowing to condi-
tion the generation on various spatial controls. However, achieving
highly consistent edits remains challenging, as it is only implicitly
encouraged via the inter-frame attention module.

Re-Render A Video [YZLL23] aims to improve consistency via
a two-step approach by editing keyframes, and applying off-the-
shelf video propagation methods to apply the edit on the rest of
the frames. Their method heavily relies on accurate optical flow
in both keyframe editing and propagation, which limits their use
to rather simple motion and short clips. Concurrently, TokenFlow
[GBTBD23] observes that consistency in RGB space is directly af-
fected by the consistency of the diffusion features across frames.
Thus, their method ensures temporal consistency by explicitly pre-
serving the inter-frame feature correspondences of the original
video. Notably, TokenFlow operates entirely in the diffusion fea-
ture space, thus does not exhibit optical-flow restrictions.

Neural Video Representations for Consistent Synthesis. Videos
inherently contain highly redundant information across time, i.e.,
often share the same objects, scene background and overall appear-
ance across frames. Thus, synthesizing or editing video content in
a frame-by-frame manner is a tedious process that is susceptible to
introducing temporal inconsistencies. This has motivated the devel-
opment of neural video representations that facilitate effective and
consistent synthesis and editing. Such representations range from
video-to-layered-image decomposition to full 4D dynamic scene
representations.

For example, representations like Layered Neural Atlases (LNA)
[KOWD21] and Deformable Sprits [YLT∗22] decompose a video
into a set of layered canonical images (atlases), with correspond-
ing per-frame deformation fields. This approach allows to sig-
nificantly simplify video editing: 2D edits applied to a single
canonical image are automatically propagated to all video frames.
Text2LIVE [BTOAF∗22] leverages LNA representation in con-
junction with CLIP to perform text-driven video editing. This ap-
proach has been extended in [LJC∗23] to leverage a pre-trained
T2I model and to enable shape deformations. While temporal con-
sistency is guaranteed by design, these methods typically require

heavy optimization (hours of training per video). To tackle this is-
sue, CoDeF [OWX∗23] proposes an efficient hash-based represen-
tation to both canonical images and deformation fields.

To ensure both temporal and geometric consistency, Make-a-
Video3D [SSP∗23b] synthesize a video by leveraging a full 4D
video representation, i.e., a 4D dynamic NeRF [CJ23], representing
the 3D position of each scene point, and its 3D motion through-
out the video. Given a target text prompt, this representation is
optimized using a score-distillation-based objective that combines
2D image priors learned by a pre-trained T2I, and motion priors
learned by a pre-trained T2V (see more details in Sec. 7).

6. 3D Diffusion

Beyond videos, the advent of diffusion models has also ushered
in a transformative era for visual computing in the domain of 3D
content generation. Although videos can be seen as 3D data (2D
frames stacked sequentially in time), here we use the term “3D”
to refer to spatial structure, i.e., 3D geometry. While 3D scenes
can be visually presented as 2D video content by rendering a scene
from multiple viewpoints, the rendered videos differ from general
video content in that they only contain camera motion (as long as
there exists a single 3D-consistent scene geometry). Generating this
scene geometry (and the accompanying appearance or texture) is
the primary focus of 3D generative tasks.

As elaborated in Sec. 4, the application of diffusion models
to higher-dimensional data faces inherent difficulties, with data
scarcity being particularly acute in the 3D domain. Existing 3D
datasets are not only orders of magnitude smaller than their 2D
counterparts, but they also exhibit wide variations in quality and
complexity (see Sec. 8). Many of the available datasets focus on in-
dividual objects with limited detail and texture, limiting their gener-
alization and usefulness for practical applications. Fundamentally,
this issue stems from the fact that 3D content cannot be captured
(or created) with the same ease as an image or video, resulting in
orders of magnitude less total data. Furthermore, the culture for
sharing 3D content is nowhere near that for 2D, exacerbating the
scarcity of annotated data.

A unique challenge specific to 3D diffusion is the lack of a stan-
dardized 3D data representation. Unlike in image and video pro-
cessing, where consensus has emerged around certain data formats,
the 3D field is still wrestling with multiple competing representa-
tions, i.e., meshes, points, voxels, and implicit functions, each with
its own merits and limitations, and each necessitating different net-
work designs. Yet, none has emerged as a definitive solution that
balances scalability with granularity.

To navigate these complexities, this section considers two dis-
tinct approaches: 1) Direct 3D Generation via Diffusion Models,
which aims to model the distribution of 3D shapes, such that 3D
content can be generated directly, putting geometry at the forefront
and potentially serving as a foundation for tasks like 3D reconstruc-
tion and shape retrieval; and 2) Multiview 2D-to-3D Generation via
Diffusion Models, which offers a more practical route by leveraging
high-quality 2D generative models to create textured, consumer-
ready 3D content. Both approaches offer valuable insights and ca-
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pabilities, each addressing different facets of the challenges and
opportunities in 3D content generation via diffusion models.

6.1. Direct 3D Generation via Diffusion Models

Due to the aforementioned challenges inherent to 3D data repre-
sentation and spatial reasoning, in the realm of “Direct 3D Gener-
ation via Diffusion Models”, the design space is notably intricate,
necessitating a nuanced exploration of various design factors that
significantly distinguish existing methodologies. This has led to a
diverse array of design choices, each with its own merits and lim-
itations. The ensuing discussion will systematically explore these
pivotal design vectors, elucidating their impact on the quality and
applicability of generated 3D content. Table 1 provides a compre-
hensive summary of the methods reviewed herein.

Type of Output. The first way to distinguish different methods
is to look at the type of output they generate. Current meth-
ods either generate object-level geometry, object-level geome-
try and appearance, or scene-level geometry and appearance (see
Fig. 7 for an example of the output). The choice of output type
is often dictated by the type of data that is available for train-
ing. Many works [LH21, ZDW21, HLHF22, ZPW∗23, ZVW∗22,
CLT∗23, EMS∗23, LDZL23, SCP∗23, ZTNW23] make use of the
few existing large-scale 3D datasets, such as ShapeNet [CFG∗15],
which include object-scale synthetic 3D models with geometry and
material provided. These works use these datasets to investigate
various design choices to adapt 2D diffusion models to 3D con-
tent; they have demonstrated the potential of diffusion models for
3D generation with satisfying geometric details—as the training
data permits. However, due to the limited size, diversity, and com-
plexity of the data, the applicability of these methods in practice
is relatively low. Especially the lack of diversity and appearance
information is a major limitation. To address this, several works,
including [NJD∗22, JN23, GXN∗23, ZLC∗23], have started to use
more complex datasets, most notably [RSH∗21,DSS∗22,DLW∗23]
with in-the-wild objects and their appearance.

More recently, several authors have started to explore the genera-
tion of large indoor and outdoor 3D scenes. The scale and complex-
ity of these scenes are much higher than the object-level datasets,
though, the diversity is still limited. Interesting, likely due to the
lack of accurate 3D ground truth and/or suitable architectures to
process large-scale 3D structures, existing scene-level generation
methods [BGA∗22, KBY∗23] opt to generate video renderings of
the scene, which includes both the static 3D scene and the cam-
era trajectory. While this is seemingly harder than generating the
3D scene only, due to the additional output mode, these approaches
can conveniently hide low-quality geometry through visually plau-
sible textures and appearance. Normally, the generated 3D scenes
are coarse and incomplete, which leads to uncanny warping effects
in the generated video, creating an illusion that the shape is deform-
ing over time. In addition, the generated scenes are still relatively
simple and lack the diversity and complexity of real-world scenes.

3D Shape Representation. Given the type of output, there can be
multiple suitable representations, for example, point clouds, voxels,
meshes, continuous or discrete samples of signed distance func-

tions (SDFs), occupancy, and radiance fields. For object-level ge-
ometry, points, meshes, occupancy and SDFs—both as continuous
functions or discrete samples—are common choices. When appear-
ance is also generated, points and meshes can be augmented with
per-point colors [NJD∗22] and textures [GXN∗23], and the occu-
pancy and signed distance function can also be augmented with tex-
ture field to form some variations of radiance field [JN23,ZLC∗23].
For scene-scale outputs, due to the lack of high-quality data in
points and meshes representations and relatively easier acquisition
in RGBD format, radiance fields become a more viable choice.

Diffusion Space. One very important way to differentiate the ex-
isting frameworks is based on the representation they employ in-
side the diffusion process. A natural choice is to apply the diffusion
process directly to the 3D shape representation. The most popular
representation in this category is points [LH21, ZDW21] and vox-
elized occupancy and SDF [ZPW∗23], as the former can be con-
veniently linked to the physics interpretation of diffusion models
with Langevin dynamics and the latter, deploying voxel structures,
can take advantage of tested 2D diffusion architectures by simply
adding a spatial dimension to all network operations. However, this
representation simply captures raw and uncompressed information,
it is very inefficient in terms of memory and computation and thus
fails to capture high-frequency details with a fixed spatial resolu-
tion. A popular alternative which addresses this issue is applying
the diffusion process on a more expressive and compact (latent)
representation, extracted from the 3D data through some transfor-
mation. The transformation can be deterministic such as a wavelet
transform used in Neural Wavelet [HLHF22], or learned as a high-
dimensional latent code [ZVW∗22, ZDW21, LDZL23, SCP∗23,
ZTNW23, NJD∗22, JN23, GXN∗23, ZLC∗23, BGA∗22, KBY∗23]
or the weights of the trainable neural implicit representation them-
selves, for example neural occupancy fields or SDFs, such as
in [EMS∗23, JN23]. These methods typically consist of two steps:
First, a piecewise constant or smooth latent code is learned from
the 3D data; Subsequently, a diffusion model is trained to denoise
these latent codes, while the autoencoder model remains fixed. The
smoothness of the latent space is crucial for the success of this
approach. It is often achieved by imposing a regularization term
on the latent codes, such as the total variation loss [FKYT∗22,
SCP∗23], or deploying a variational framework such as (vector
quantized) variational autoencoder [MCST22]. While the two-step
approach has been predominant, a series of concurrently developed
works [AXF∗23,KVNM23,KMVN23,CGC∗23] demonstrate how
these two steps can be unified into end-to-end training, which is not
only more efficient in a practical sense but also mutually beneficial
for the two steps. We will discuss this in greater detail in the Types
of Supervision paragraph.

Structure of the Latent Codes. While the simplest form of latent
code takes the form of a 1D vector [EMS∗23,JN23,BGA∗22], most
approaches opt for a more spatially aligned latent code to improve
the locality and capability of the latent representation. This struc-
ture governs computational efficiency and memory requirements
and, more importantly, it is coupled with the choice of diffusion ar-
chitecture. In fact, the popularity of well-established convolution-
based diffusion architectures has led to the widespread use of voxel
grids [CLT∗23, LDZL23, KVNM23, KMVN23]. Still using con-
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Output Method 3D Repr.
Diffusion

Repr.
Latent
Struct.

Diffusion
Arch.

Super-
vision

Hierar-
chical

Optional
Conditioning

Data

ob
je

ct
ge

om
.

DPM [LH21] points points - PointNet 3D � NA ShapeNet
PVD [ZDW21] points points - PVCNN 3D � d ShapeNet

NeuralWavelet [HLHF22] TSDF grid wavelet coefficients - 3D U-Net 3D � NA ShapeNet
LAS-Diffusion [ZPW∗23] Occ. & SDF grid Occ. grid & SDF octree - 3D U-Net 3D � k, c ShapeNet

LION [ZVW∗22] points latents points PVCNN 3D � s ShapeNet

SDFusion [CLT∗23] TSDF grid latents voxel 3D U-Net 3D � s, i, t
ShapeNet, BuildingNet,

Pix3D, Text2shape
HyperDiffusion [EMS∗23] SDF net weights 1D Transformer 3D � NA ShapeNet
Diffusion-SDF [LDZL23] TSDF grid latents voxel 3D U-Net 3D � s, i, t ShapeNet, Text2shape

NFD [SCP∗23] Occ. latents triplane 2D U-Net 3D � NA ShapeNet
3DShape2VecSet [ZTNW23] SDF latents set 1D U-Net 3D � s, c, i, t ShapeNet, ShapeGlot

Michelangelo [ZLC∗23] occupancy latents set 1D U-Net 3D � i, t
ShapeNet

3D Cartoon Monster (not public)
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ge

om
.+

ap
pe

ar
. Point-E [NJD∗22] colored points latents points Transformer 3D � t proprietary

Shap-E [JN23] radiance field net weights 1D Transformer 3D � t proprietary
3DGen [GXN∗23] textured mesh latents triplane U-Net 3D � i, t ShapeNet, Objaverse
DiffRF [MSP∗23] radiance field latents voxel U-Net 3D U-Net � i Photoshape Chairs, ABO

RenderDiffusion [AXF∗23] radiance field latents triplane U-Net 2D � i
FFHQ, AFHQv2,

CLEVR, ShapeNet
HoloDiffusion [KMVN23] radiance field latents voxel 3D U-Net 2D � i CO3Dv2

HoloFusion [KVNM23] radiance field latents voxel 3D U-Net 2D � i CO3Dv2
SSDNeRF [CGC∗23] radiance field latents triplane U-Net 2D � i ShapeNet, ABO

sc
en

e
ge

om
.+
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pe
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.

GAUDI [BGA∗22] radiance field latents 1D 1D U-Net 2D � i, t, c
VizDoom, Replica,

VLN-CE, ARKitScenes

NF-LDM [KBY∗23] radiance field latents hybrid 1-2D U-Net 2+3D � m
VizDoom, Replica,

Carla, AVD (not public)

Table 1: Geometry Generation with Diffusion Models. We divide the table into three sections corresponding to the generation of object-level
geometry, object-level geometry and appearance, and scene-level geometry and appearance. The conditioning column uses t (text), i (image),
d (depth map), k (sketch), m (segmentation map), c (category), s (partial or coarse shape) and NA (not applicable).

(a) Object-level geometry (b) Object-level geometry and appearance (c) Scene-level geometry and appearance

Figure 7: Direct 3D Generation. Representative examples of direct 3D generation via diffusion models. The examples from left to right
depict the state-of-the-art results of the generation of object-level geometry [ZTNW23], object-level geometry and appearance [CGC∗23],
and scene-level geometry and appearance generation [BGA∗22, KBY∗23].
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volution, the triplane structure [CLC∗22] is also a popular choice
[SCP∗23,GXN∗23,AXF∗23,WZZ∗23], which factorizes a 3D vol-
ume to three axis-aligned orthogonal planes [PNM∗20, CLC∗22]
and thereby significantly reduces the memory and computation
cost.

In an alternative approach, some methods have adopted point
clouds as the data structure for latent codes [ZVW∗22,NJD∗22]. In
this paradigm, each latent code is associated with a specific point in
the 3D space, thereby enabling localized information storage. The
spatial locations of these points are either learned or inferred from
the input shape during the initial latent learning phase. In a more ab-
stract vein, 3DShape2VecSet [ZTNW23] eschews spatial informa-
tion altogether by eliminating the coordinates from the latent codes.
Consequently, the latent codes become a set of unbounded codes,
offering greater flexibility to model long-range dependencies and
self-similarities at the expense of spatial locality. These models of-
ten employ architectures like common point-processing networks
such as transformers and point-voxel CNN [LTLH19], where the
latter synergizes PointNet with voxel partitions to impose spatial
locality. Despite its premise of sparsity and scalability, this type of
structure has not been adopted for large-scale scene-level 3D gen-
eration.

Hierarchy. One design choice inherited from 2D diffusion mod-
els is if a method employs a multi-stage (typically two-stage) dif-
fusion process to achieve high-resolution generation while under
memory and computation constraints. As exemplified in [HLHF22,
ZPW∗23, ZVW∗22, NJD∗22, KMVN23, KBY∗23], the first stage
generates a coarse representation and the second stage refines the
output to a higher resolution. It is noteworthy that such a two-stage
approach can use different representations for the lower and the
higher resolution, for example [ZPW∗23] uses an occupancy grid
in the first stage and an SDF octree in the second stage.

Types of Supervision. While most of the discussed techniques try
to learn 3D shapes or scenes from datasets of 3D shapes or scenes,
a different approach is to follow the success of 3D GANs to train a
diffusion model directly from datasets of 2D images. These meth-
ods can be considered as a special form of latent diffusion, in which
the latent codes capture 3D information, yet the decoder converts
the latent codes to 2D observations. Examples are RenderDiffu-
sion [AXF∗23], Holodiffusion [KVNM23], SSDNeRF [CGC∗23],
GAUDI [BGA∗22], Viewset Diffusion [SRV23], and Diffusion
with Forward Models [TYC∗23]. In particular, the first four meth-
ods adopt an end-to-end training strategy, integrating the learning
of the latent codes and the diffusion process into a single training
process. As such, these methods are able to learn the latent codes
that are most suitable for the diffusion process, while using the dif-
fusion prior in-the-loop to regularize and improve the convergence
of the latent learning. Notably, such an end-to-end approach has
a significant meaning, as it eliminates the need to first train the
ground truth “clean” 3D representation, which often requires 3D or
dense 2D image supervision. Control3Diff [GGZ∗23] merges dif-
fusion models and GANs to enable training on single-view datasets,
such as FFHQ and AFHQ. It leverages EG3D [CLC∗22] to gener-
ate numerous pairs of control signals and tri-planes, employing a
diffusion model with optional image guidance to learn the prior

distributions of tri-planes and camera poses from input images. In
future work, one could leverage more diverse large-scale 2D image
datasets, such as LAION, which can be orders of magnitude larger
than the largest 3D datasets.

Conditioning. Multiple types of conditioning have been used in
the context of 3D diffusion models: text, images, depth maps,
sketches, segmentation maps, shape category, or partial or coarse
shapes. Most importantly, the task of text conditioning in these
models presents unique challenges, primarily due to the scarcity of
large-scale 3D datasets with corresponding text descriptions. Exist-
ing datasets, such as Text2Shape [CCS∗19], ShapeGlot [AFH∗19],
PartIt [HLZH21], SNARE [TSB∗22], and ShapeTalk [AHS∗23],
are predominantly confined to a limited range of object-level shape
categories. This constraint significantly curtails the complexity and
diversity of the generative models, thereby limiting their appli-
cability. To circumvent the dearth of text-shape paired datasets,
some studies have resorted to using images as surrogate data.
These methods exploit the shared embedding space between text
and images to condition the diffusion process. During the train-
ing phase, an image representation of the 3D shape is initially
obtained through a rendering process. Subsequently, models such
as CLIP are employed to derive an image embedding that serves
as a conditioning variable for the diffusion model. At test time, a
text prompt is processed through CLIP to obtain a text embedding,
which can then be used interchangeably with the image embedding.
This approach is agnostic to the choice of the underlying genera-
tive model. For instance, when initially proposed by Sanghi et al.
[SCL∗22], the generative model was based on normalizing flows.
Diffusion-based 3D generative methods, such as those presented
in [SFL∗23, NJD∗22, ZLC∗23, JN23], have successfully adopted
this strategy.

Datasets. Table 1 also includes the specific datasets that were used
by the different papers. We do not provide an in-depth discussion
of these datasets but refer the reader to Sec. 8 that reviews the most
important datasets used by diffusion techniques overall.

Summary. The complexity of the design space in “Direct 3D Gen-
eration via Diffusion Models” stems from the lack of standardized
data representations and architectures for 3D content. The 3D data
landscape is characterized by its problematic sparsity coupled with
a large spatial span, making it a challenging candidate for any sin-
gle, standardized architecture capable of effective spatial reason-
ing. Consequently, researchers have ventured into a multitude of
design choices, ranging from the type of output and 3D shape rep-
resentation to the architecture of the diffusion model and super-
vision strategy. In this section, we have attempted to identify the
most fundamental design choices explored by recent publications,
shedding a light on their impact and the tradeoffs involved. Despite
these advancements, it is imperative to acknowledge that 3D assets
remain substantially less abundant compared to their 2D counter-
parts. While future work will be able to build on larger datasets,
such as Objaverse [DSS∗22] and Objaverse-XL [DLW∗23], there
is still a large discrepancy in dataset size between 2D and 3D diffu-
sion models. This discrepancy underscores the need for innovative
methodologies that can bridge this gap. In the ensuing section, we
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an orangutan making a clay bowl on a throwing wheel* a raccoon astronaut holding his helmet† a blue jay standing on a large basket of rainbow macarons*

a corgi taking a selfie* a table with dim sum on it† a lion reading the newspaper*

Michelangelo style statue of dog reading news on a cellphone a tiger dressed as a doctor* a steam engine train, high resolution*

a frog wearing a sweater* a humanoid robot playing the cello* Sydney opera house, aerial view†

an all-utility vehicle driving across a stream† a chimpanzee dressed like Henry VIII king of England* a baby bunny sitting on top of a stack of pancakes†

a sliced loaf of fresh bread a bulldozer clearing away a pile of snow* a classic Packard car*

zoomed out view of Tower Bridge made out of gingerbread and candy‡ a robot and dinosaur playing chess, high resolution* a squirrel gesturing in front of an easel showing colorful pie charts

Figure 1: DreamFusion uses a pretrained text-to-image diffusion model to generate realistic 3D
models from text prompts. Rendered 3D models are presented from two views, with textureless ren-
ders and normals to the right. See dreamfusion3d.github.io for videos of these results. Symbols
indicate the following prompt prefixes which we found helped to improve the quality and realism:

* a DSLR photo of... † a zoomed out DSLR photo of... ‡ a wide angle zoomed out DSLR photo of...

2

Figure 8: Text-to-3D Generation. Example text-to-3D genera-
tions from DreamFusion [PJBM22] with corresponding input text-
prompts. Each synthesized 3D model is rendered in two views with
untextured renders and normals shown to the right. Image adapted
from [PJBM22].

will explore how 2D diffusion models can be leveraged to facilitate
the generation of 3D content.

6.2. Leveraging 2D Diffusion Models for 3D Generation

The exploration of 2D diffusion models for 3D generation stems
from the notable advancements in image synthesis conditioned on
text. These strides owe their success to abundant text-aligned image
datasets and scalable model architectures. While similar techniques
have been attempted for 3D generation (as described in the previous
section), the scarcity of 3D data and the lack of well-explored de-
noising architectures present significant challenges. Notably, large-
scale datasets such as LAION-5B [SBV∗22], containing 5 bil-
lion text-image pairs, dwarf the largest available text-3D dataset,
Objaverse-XL [DLW∗23], with its mere 10 million paired samples.

To surmount the limitations imposed by limited 3D data and ar-
chitectures, innovative strategies leveraging 2D image priors for
3D generation have emerged. These techniques distill multi-view
geometry understanding, either implicitly learned from large-scale
image diffusion models or explicitly via image diffusion models
additionally conditioned on input camera poses and trained or fine-
tuned on multi-view datasets.

6.2.1. Methods

Text-to-3D using Pre-trained Image Diffusion Models. Utiliz-
ing pre-trained image diffusion priors, DreamFusion [PJBM22]
stands as a prime example, achieving groundbreaking text-to-3D
generation. This innovative approach harnesses established image
priors, allowing for zero-shot synthesis of intricate 3D objects, as
vividly demonstrated in Fig. 8. The method revolves around opti-
mizing a 3D model represented as a Neural Radiance Field (NeRF)
through a specialized image space loss. This loss function, tailored
to leverage pre-trained image diffusion models as priors, assigns
lower values to plausible images, ensuring the coherence of gener-
ated 3D objects. This process of sampling through gradient descent
optimization is known as Score Distillation Sampling (SDS). For-
mally, a 3D scene representation parameterized by φ is rendered by
a differentiable generator g at a sampled camera pose, generating
an image g(φ). Gaussian noise η is then injected into the image
and passed through an image diffusion prior parameterized by θ,
with text condition c. 3D scene parameters are then updated via the
gradient:

∇φLSDS(θ,g(φ)) = Et,ϵ

[
w(t)(ϵ̂θ(xt ;c, t)−η)

∂g(φ)
∂φ

]
. (13)

Importantly, this technique has broader applicability, extending be-
yond 3D synthesis as explored by Hertz et al. [HACO23] for im-
age editing. Crucially, this optimization through 3D model and
differentiable rendering guarantees that each optimized image ad-
heres to multi-view constraints, ensuring a coherent 3D model.
This methodology, embraced by subsequent works such as Score
Jacobian Chaining [WDL∗22], Magic3D [LGT∗23], and Latent-
NeRF [MRP∗23], maintains a similar philosophy while exploring
diverse underlying representations for the optimized 3D model.

However, direct SDS application for 3D generation poses chal-
lenges, notably the Janus problem, where radially asymmetric ob-
jects exhibit unintended symmetries, like multiple faces on a human
head. To mitigate this artifact, researchers in works like Dream-
Fusion [PJBM22], Score Jacobian Chaining [WDL∗22], Latent-
NeRF [MRP∗23], and Magic3D [LGT∗23] employ strategies like
view-dependent prompting, e.g., “top-view of ...”, and additional
regularization terms. Alternatively, learning 3D representations
from multi-view diffusion models ensures consistency across di-
verse views.

Additionally, SDS-based 3D generation demands operation at
unusually high guidance scales, influenced by the mode-seeking
behavior of the loss function. Operating beyond the typical range of
the pre-trained image prior leads to saturation artifacts and limited
diversity in outputs. ProlificDreamer [WLW∗23] tackles these chal-
lenges through Variational Score Distillation, a generalized SDS
version. This method incorporates finetuning of the image model
using LoRA [HSW∗21] during per-scene optimization, with the in-
tention of mitigating both the Janus problem and the need for high
guidance scales.

Adapting Image Models for Multi-view Synthesis. The efficacy
of image diffusion models for 3D generation, as exemplified by
DreamFusion [PJBM22], has prompted subsequent investigations.
Follow-up studies have underscored the enhanced generation qual-
ity achievable through the finetuning of pre-trained image priors
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with 3D data. Zero-1-to-3 [LWH∗23] finetunes a pre-trained text-
to-image model to add camera pose conditioning. This finetuning
is done on pairs of multi-view images rendered from the Obja-
verse dataset [DSS∗22]. The resulting model takes as input an im-
age and the camera parameters of a new viewpoint, and returns
an image rendered at the novel view. This method has also been
proven to work at scale, as Deitke et al. [DLW∗23] train Zero-1-to-
3-XL in a similar fashion using the larger Objaverse-XL dataset.
This flavor of pose-conditioned image diffusion model can also
be trained from scratch on multi-view image data, as shown by
3DiM [WCMB∗22]. Performing DreamFusion-like 3D aggrega-
tion using a diffusion model with these added pose conditioning
signals helps reduce the need for certain tricks like view-dependent
text prompting. Unfortunately, these single-view models still suf-
fer from many of the same artifacts as standard DreamFusion due
to the fact that only a single image is queried a time (and, there-
fore, multiple queried viewpoints may propagate contradictory sig-
nals into the 3D model). Newer methods aim to resolve this: MV-
Dream [SWY∗23] finetunes a pre-trained image diffusion model
to create a multi-view diffusion model, capable of generating a set
of geometrically consistent images of the same object at four fixed
camera poses, from an input text prompt. This is achieved through
the addition of a 3D self-attention module trained on multi-view
images rendered from the Objaverse [DSS∗22] 3D dataset. The
resulting multi-view diffusion model can be directly used for 3D
generation through SDS. Since the multi-view diffusion model out-
puts images from four orthogonal azimuth angles, rather than from
a single view at a time, this method provides a principled rem-
edy to the aforementioned Janus problem. SyncDreamer [LLZ∗23]
approaches multi-view diffusion by grounding features from each
generated view into an explicit 3D feature space. Using a 3D-aware
attention mechanism, SyncDreamer synchronizes the intermediate
states between the diffusion paths across different viewpoints, es-
tablishing 3D correspondence between them.

As yet another direction in this research domain, Dream-
Booth3D [RKP∗23] combines the DreamFusion [PJBM22] opti-
mization framework with the DreamBooth [RLJ∗22] approach of
fine-tuning a 2D diffusion model on a small set of images of a spe-
cific instance of an object or entity. This effectively enables con-
trollable instance-specific image-conditioned 3D generation, where
a small set of images can be used alongside a text prompt to gen-
erate a 3D model that reflects the combined understanding of that
text and those images.

3D-Aware Image Diffusion. Although finetuning higher-
dimensional models on top of large pre-trained T2I models helps
simplify the training process, the choice to build off a pre-trained
model can limit control over the architectural design space. An-
other line of work explores training models from scratch, such that
architectures may be 3D-aware or use more explicit multi-view rea-
soning to provide conditioning signals. GeNVS [CNC∗23] tackles
single-image novel-view synthesis by training a 3D-aware condi-
tional diffusion model that incorporates geometric priors in the
form of a 3D feature volume obtained from an input image (or im-
ages, when performing autoregressive generation). A feature image
rendered from the feature volume at the novel viewpoint provides
3D-aware conditioning to the diffusion model. NerfDiff [GTL∗23]

takes a similar approach, providing PixelNeRF [YYTK21] render-
ings at novel views as conditioning to a 3D-aware diffusion model.
SparseFusion [ZT23] and Sparse3D [ZCC∗23] use an epipolar
feature transformer [SESM22] to provide a conditioning signal to
a finetuned image diffusion model.

In a separate vein, 3D-aware image generation has also been
explored through the perpetual view generation problem intro-
duced by InfiniteNature [LTJ∗21, LWSK22]. For example, given
only a text prompt, SceneScape [FAKD23] generates 3D-consistent
videos depicting static scenes rendered from a specified camera tra-
jectory. To achieve this, they leverage a pre-trained T2I model, and
construct a unified mesh representation of the scene, along with the
video generation process. DiffDreamer [CCP∗23] trains a condi-
tional diffusion model that takes a single input image and generates
renderings of a specified camera trajectory flying into the scene.
Although these tasks seem similar, flying into a scene is more chal-
lenging because this problem not only requires 3D-multi-view con-
sistent out-painting but also super-resolution, as novel details of a
previously seen structure become visible in later frames.

6.2.2. Applications

3D Editing. Following the success of InstructPix2Pix [BHE23] for
instruction-based image editing, InstructNeRF2NeRF [HTE∗23]
achieves similar results for editing 3D scenes. Similar to SDS, the
diffusion model (in this case, a text-and-image conditioned model
that edits images) is queried repeatedly through optimization, and
the model outputs are propagated back into a the NeRF scene. A
few modifications are made to the standard SDS formulation, how-
ever. First, the diffusion model is queried not once, but rather multi-
ple times, such that the fractionally noised image can be sampled to
a clean output image (as in [ZT23]). Then, to derive a loss, instead
of directly comparing the noise estimate to the injected noise, the
clean image is compared to the original scene rendering. Finally,
this loss is not applied for one image at a time (as in DreamFu-
sion), but rather at a randomly shuffled set of rays from the set of
captured views (which is standard in NeRF optimization). This ef-
fectively amounts to iteratively updating the dataset of images used
for training the NeRF, and is similar in spirit to the method propose
in SNeRF [NPLX22] for 3D style transfer.

Fig. 9 shows example edits of the same initial 3D scene with
the corresponding text-based instructions. InstructNeRF2NeRF can
handle a diverse set of instructions while performing multi-view
consistent 3D edits. While InstructNeRF2NeRF enables diverse
holistic and contextual edits with high fidelity, it can often be bot-
tlenecked by the performance of InstructPix2Pix: If a certain edit
is not possible in 2D or is too inconsistent, it will not be reflected
in 3D. Similarly, one occasional failure mode of InstructPix2Pix
is over-editing, i.e., when unintended parts of the scene are modi-
fied. To resolve this, and have guarantees on localized editing, one
may inherit insights from methods like DreamEditor [ZWL∗23]
and Vox-E [SFHAE23] that can detect the region to be edited using
the underlying attention maps from the diffusion model.

Scene Generation. Locally conditioned diffusion (LCD) [PW23]
enables controllable 3D generation with intuitive user inputs. LCD
transforms user-defined bounding boxes with corresponding text
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Instruct-NeRF2NeRF: Editing 3D Scenes with Instructions

Ayaan Haque, Matthew Tancik, Alexei A. Efros, Aleksander Holynski, and Angjoo Kanazawa

UC Berkeley

NeRF Scene

Instruct
NeRF2NeRF

“Give him a cowboy hat” “Give him a mustache” “Make him bald”

“Turn him into a clown” “As a bronze bust” “Turn him into Albert Einstein”

“Turn his face into a skull” “Turn him into a Modigliani painting” “Turn him into Batman”

Edited NeRF

Figure 1: Editing 3D scenes with Instructions. We propose Instruct-NeRF2NeRF, a method for consistent 3D editing of a NeRF scene
using text-based instructions. Our method can accomplish a diverse collection of local and global scene edits.

Abstract

We propose a method for editing NeRF scenes with text-

instructions. Given a NeRF of a scene and the collection

of images used to reconstruct it, our method uses an image-

conditioned diffusion model (InstructPix2Pix) to iteratively

edit the input images while optimizing the underlying scene,

resulting in an optimized 3D scene that respects the edit

instruction. We demonstrate that our proposed method is

able to edit large-scale, real-world scenes, and is able to

accomplish more realistic, targeted edits than prior work.

Result videos can be found on the project website: https:
//instruct-nerf2nerf.github.io.

1. Introduction

With the emergence of efficient neural 3D reconstruc-
tion techniques, capturing a realistic digital representation
of a real-world 3D scene has never been easier. The pro-
cess is simple: capture a collection of images of a scene

from varying viewpoints, reconstruct their camera param-
eters, and use the posed images to optimize a Neural Ra-
diance Field [26]. Due to its ease of use, we expect cap-
tured 3D content to gradually replace the traditional pro-
cesses of manually-generated assets. Unfortunately, while
the pipelines for turning a real scene into a 3D representa-
tion are relatively mature and accessible, many of the other
necessary tools for the creation of 3D assets (e.g., those
needed for editing 3D scenes) remain underdeveloped.

Traditional processes for editing 3D models involve spe-
cialized tools and years of training in order to manually
sculpt, extrude, and re-texture a given object. This pro-
cess is made even more involved with the advent of neural
representations, which often do not have explicit surfaces.
This further motivates the need for 3D editing approaches
designed for the modern era of 3D representations, particu-
larly approaches that are similarly as accessible as the cap-
ture techniques themselves.

To this end, we propose Instruct-NeRF2NeRF, a method
for editing 3D NeRF scenes that requires as input only a
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Figure 9: Instruction-based 3D Editing. Example instruction-
based 3D edits from InstructNeRF2NeRF [HTE∗23] with corre-
sponding text-prompts. All edits are performed over the same input
reconstructed NeRF scene. Image reproduced from [HTE∗23].

prompts and generates 3D scenes matching the desired layout. This
is achieved using a modified SDS-based pipeline that takes the user
input as conditioning. The method allows explicit control over the
size and position of individual scene components while ensuring
seamless transitions between them. Text2Room [HCO∗23] gener-
ates textured 3D meshes of indoor rooms from a given text prompt.
Although it also leverages a pre-trained image prior, 3D synthesis
is not enabled through SDS. Instead, a pre-trained monocular depth
estimator is used to provide 3D information. The method generates
a textured 3D mesh by iteratively inpainting the scene at randomly
sampled camera angles. During each inpainting step, a monocular
depth estimator is used to create a 3D mesh of the new scene con-
tent, which is then merged with the rest of the existing geometry.

7. Towards 4D Spatio-temporal Diffusion

The capabilities of video generation and editing tools are rapidly
advancing (see Sec. 5), but the underlying T2V models often lack a
mechanism to model long-range temporal consistency or consistent
3D structure of their objects and scenes. 3D generative tools (see
Sec. 6) are specifically designed to enable spatial reasoning. Yet,
these tools are limited to modeling static scenes with rigid (cam-
era) motion. We consider video generation and editing that have an
understanding of the underlying 3D structure of a (dynamic) scene
as 4D in the sense that they combine 3D structure and time, includ-
ing non-rigid deformation and general motion. In this realm, we
discuss articulated object and avatar generation, motion generation,
and more general 4D generation and editing tools in the following.

7.1. Articulated Avatars, Animals, and Objects

Articulation refers to a class of non-rigid motions in which the
deformation of an object is composed of locally rigid transforma-
tions. Many objects in everyday life are articulated, including hu-
man faces and bodies as well as animals. Articulated objects can be
intuitively controlled in a manual manner or using motion capture,
for example using skeleton-based or template-mesh-based handles.

This set of techniques has been popular and broadly applied in the
field of computer graphics for the last few decades.

Generating articulable 3D avatars from a given text prompt is
a popular line of research in this area. This class of methods often
generates 3D digital humans by constraining the outputs to follow a
given parameterized model. For example, DreamHuman [KAZ∗23]
generates articulable human avatars using imGHUM [AXS21], an
implicit statistical 3D human pose and shape model. Bergman
et al. [BYW23] synthesize articulated 3D heads by optimiz-
ing the geometry and texture of a 3D morphoable model and
TADA! [LYX∗23] optimizes over a human model derived from
SMPL-X [PCG∗19]. DreamFace [ZQL∗23] is a CLIP-based se-
lection approach for animatable head avatar generation from text
prompts. It first chooses coarse proxy geometry and then refines
it for consistency with the text prompt using SDS loss and adds
the hair. TECA [ZFK∗23] synthesises 3D human avatars com-
posed of mesh-based head (generated first) and other elements
based on NeRF (hair, garments and accessories; added afterwards
using SDS loss and guidance from segmentation) from text de-
scriptions; the texture is inpainted with diffusion models. Anima-
tions of the generated avatars can be performed leveraging a human
parametric model [PCG∗19]. DreamAvatar [CCH∗23] and Avatar-
Craft [JWZ∗23] also focus on the creation of articulable avatars
from text prompts and support body articulation. 4D Facial Dif-
fusion Model [ZFY∗23] generates facial expressions of a tem-
plate face mesh. The AvatarStudio method [MPE∗23] creates text-
guided stylizations of high-quality 3D neural face avatars using a
new view- and time-consistent score distillation sampling.

Diffusion-based generation of more general 3D articulated ob-
jects has been explored by NAP [LDS∗23]. This system uses a tree
parameterization for modeling the irregular distribution of articu-
lated objects across different datasets and supports unconditional
and conditional articulated shape generation (e.g., conditioned on
object parts or joints). ARTIC3D [YRH∗23] leverages a genera-
tive 2D diffusion model prior to learning articulated and animat-
able 3D animal shapes. Given a sparse and (not curated and with-
out 2D or 3D annotations) image collection containing 10–30 im-
ages of an animal species, ARTIC3D estimates camera viewpoints,
pose articulations, part shapes and texture for each observed in-
stance; no shape initializations, pre-defined 3D skeletons or shape
templates are required, in contrast to previous works in this area
[KTEM18, STG∗20, YSJ∗21, YHL∗22, WLJ∗23].

7.2. 3D Human Motion Generation

In recent years, deep learning has made remarkable strides in ad-
vancing character animation. Thanks to the availability of large hu-
man motion datasets to the public, researchers in character anima-
tion have been training data-driven models to predict character mo-
tion, conditioned on the motion history, agent observations or var-
ious forms of user commands. However, a persistent challenge in
developing predictive motion models is that the mapping between
input conditions and output motions is rarely one-to-one. For ex-
ample, when a character is instructed to approach a chair, they have
multiple options, such as walking around it, moving it, or sitting on
it. This challenge necessitates the adoption of generative models.
Indeed, generative models provide a principled solution to learn a
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conditional data distribution, making them well-suited for model-
ing many-to-many mappings inherent in human motion synthesis.

A significant body of work has explored approaches based on
Generative Adversarial Networks (GANs) and Variational Autoen-
coders (VAEs) to synthesize motion trajectories [BKL18] or train
auto-regressive motion priors [LZCVDP20,RBH∗21]. While these
methods have shown varying degrees of success, the full benefits of
generative models were not always realized due to issues like mode
collapse, posterior collapse or training instability. However, in early
2022, diffusion-based approaches entered the field of character an-
imation and rapidly became the preferred choice among generative
models. Unlike Conditional VAEs (CVAE) and GANs, diffusion
models excel at modeling multimodal distributions and offer ease
of training. Additionally, diffusion models allow for flexible motion
editing during inference using techniques such as “In-painting”,
which aligns well with the needs of digital content creation across
a wide range of computer graphics applications.

Nevertheless, the successful application of diffusion in motion
synthesis heavily relies on the quality and quantity of training
datasets. Furthermore, for conditioned models, a demanding pre-
requisite is the existence of paired training datasets that estab-
lish a clear correspondence between the conditioning informa-
tion and 3D human motion. These constraints can indeed limit
the applicability of diffusion models. Currently, various human
motion datasets exist, coupled with diverse conditions, includ-
ing text [GZZ∗22, GZW∗20], music [LYRK21], audio [FM18],
video [IPOS14, MRC∗17], scene descriptions [ALV∗23, GM-
SPM21,ZYM∗22,YK19,ZMZ∗22] and objects [TGBT20,FTT∗23,
BXP∗22, LWL23]. Continuing to develop and share such large-
scale, diverse, and high-quality paired motion datasets is a valuable
investment in the relevant research and development communities.

Different motion representations have been used in prior work
without a clear advantage of one over the other. While all as-
sume an underlying body model, some use a minimal represen-
tation such as the 6D joint rotations [TCL23, KKC23], while oth-
ers allow a redundant representation by having both positions and
rotations [TRG∗23, CJL∗23]. It is also a common practice to in-
clude contact information as part of the motion representation to
address concerns like foot sliding or surface penetration [TCL23].
Some studies have suggested employing redundant representa-
tions and using self-consistency to improve learning of diffusion
models [TRG∗23]. Furthermore, learning an encoded motion rep-
resentation has also shown benefit in training diffusion models
[CJL∗23, JCL∗23, AZL23].

Despite the initial success of diffusion-based approaches in the
early exploration phase, several recurring issues have surfaced in
motion synthesis applications. Notably, diffusion models, like most
machine learning techniques, lack an inherent ability to precisely
satisfy constraints, often resulting in motion artifacts such as vi-
olations of physical and geometric properties, or failure to fol-
low the control signals or specifications provided as input. Several
proposed methods aim to address this concern, including gradient
guidance [RLBP∗23, KPST23], learning of conditions via supervi-
sion [LWL23], direct editing during inference [TRG∗23], or refin-
ing the model through reinforcement learning processes [HPD∗23].
While these methods have shown varying degrees of success in

Figure 10: Motion Generation. Dances synthesised from audios
by the approach of Alexanderson et al. [ANBH23] for Locking (top
row) and Krumping (bottom row) dance styles. Image reproduced
from [ANBH23].

controlling output motion, they cannot guarantee precise constraint
satisfaction and controllability.

The remaining part of the subsection highlights a few active re-
search directions in motion synthesis and the representative papers
that advanced the areas.

Motion Generation Conditioned on Time-series. A number of
recent works focus on generating motion synthesis from a time-
series input, such as audio, music, or text. EDGE [TCL23] is a
transformer-based diffusion model paired with a pre-trained mu-
sic feature extractor Jukebox [DJP∗20]—acting as cross-attention
context—for realistic dance motion generation. EDGE offers ver-
satile editing functionality and arbitrary long sequences. This is
possible by replacing the known regions with forward-diffused
samples of the provided constraint (through masking), which
is an increasingly popular technique enabling editability at test
time without the need for model retraining. Listen, Denoise, Ac-
tion! [ANBH23] is a method based on a stack of Conformers
[ZLC∗22] for dance motion generation from audio signals (see
Fig. 10). It takes acoustic feature vectors and an optional style vec-
tor as inputs. The method enables control over motion style with
classifier-free guidance and dance style interpolation thanks to the
product-of-experts ensembles of diffusion models (guided interpo-
lation of different probability distributions). MoFusion [DMGT23]
conditions human dance generation on Mel spectrograms. The ad-
vantage of this method is that the context embedding layer of the
MoFusion architecture learns a suitable injection of the audio sig-
nal to the feature space of a U-Net, in contrast to MFCC features,
for example, which offer less flexibility.

Motion Generation with Spatial Constraints. Integration of spa-
tial constraints into 3D human motion generation with diffusion
models is another active research direction. GMD [KPST23], for
example, offers two elaborate mechanisms to allow spatial condi-
tioning including trajectory, keypoints and obstacle avoidance ob-
jectives. NIFTY’s architecture [KRG∗23] includes an object inter-
action field that guides the motion generator to enable the sup-
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port of human-object interactions. AGRoL [DKP∗23] is an MLP-
based architecture with a conditional diffusion model for full-body
motion synthesis accepting a sparse upper-body tracking signal.
The method supports real-time inference rates, which places them
among only a few techniques well-suitable for AR and VR appli-
cations. InterGen [LZL∗23a] is a model generating interactive hu-
man motions. The paper considers the case of two virtual charac-
ters constraining each other’s movements. InterGen’s objective is
reflected in its architecture: It contains cooperative denoisers that
share weights and a mutual attention mechanism, which improves
the motion generation quality. Additional interaction regularizers
(losses) with a damping schedule allow modeling of complex spa-
tial relations between the generated motions. Similarly, Shafir et
al. [STKB23] train a slim communication layer to synchronize two
pre-trained motion models using only a few training examples.
PhysDiff [YSI∗23] goes a different way beyond geometric priors,
namely physics-guided motion diffusion: It adds a physics-based
motion projection step into the diffusion process of existing meth-
ods that mitigates such artefacts as floating in the air, foot-floor
penetration and foot sliding. The projection step of PhysDiff is a
human motion imitation policy controlling a virtual character in a
physical simulator and enforcing the physical constraints. Another
approach MACS [SMB∗24] focuses on human hands and generates
their motions in interaction with a pre-defined object with varying
mass, which is enabled by a cascaded diffusion model. Different
object masses are reflected in the different hand-objects interacting
patterns (e.g. light objects can be held and manipulated sidewards).

Synthesis of Long Motion Trajectories. Being able to generate
arbitrarily long motion sequences is crucial to many online appli-
cations. The TEDi approach [ZLAH23] entangles the time-axis of
diffusion and temporal motion axis: In each diffusion step of their
stationary motion buffer (aka pre-defined motion generation win-
dow), they remove a clean frame at the beginning of the buffer
and append a new noise vector to its end. A different approach is
pursued by DoubleTake, [STKB23] that extends MDM for long-
term motion synthesis without additional training. Their sequential
composition approach concatenates short motion sequences with a
diffusion blending step (performed in a zero-shot manner): In the
first “take”, their method generates motion batches and the sec-
ond “take” refines the transitions between individual motions. Their
motion prior is trained from short 3D motion clips only, and the
method allows individual control of each motion interval. MoFu-
sion [DMGT23] can generate long motion using seed conditioning
in a sliding window fashion. The provided seed motion frames are
first corrupted by noise, while the remaining ones that need to be
generated are initialised with random noise. At each denoising step,
the seed frames are masked out, which eventually leads to gener-
ated motions complementing the seed motions. A similar policy is
also applicable to MotionDiffuse [ZCP∗22], MDM [TRG∗23] and
EDGE [TCL23]. In Alexanderson et al. [ANBH23], translation-
invariant policy to encode positional information enables better
generalisation to long sequences.

Motion Generation Based on Multiple Modalities. Many mo-
tion generation algorithms leverage inputs with multiple modal-
ities. For example, gesture generation approaches use speech as
a condition along with text for style; the attention mechanism is

leveraged to synchronise the gestures to the speech. The approach
of Deichler et al. [DMAB23] proposes a contrastive speech and
motion pre-training module that learns joint embedding of speech
and gesture; it learns a semantic coupling between these modali-
ties. DiffuseStyleGesture [YWL∗23] is an audio-driven co-gesture
generation approach that synthesises gestures matching the mu-
sic rhythm and text descriptions based on cross-local and self-
attention mechanisms. It uses classifier-free guidance to manipu-
late the initial gestures and interpolate or extrapolate them. EMoG
[YWH∗23] decomposes the generation problem into two steps, i.e.,
joint correlation and temporal dynamics, and shows that explicitly
predicting joint correlation improves generation quality. DiffMo-
tion [ZJGL23] is a two-stage framework for speech-driven gesture
synthesis. Its auto-regressive temporal encoder (LSTM-based) con-
ditions the diffusion module on temporal dynamics extracted from
the preceding human poses (gestures) and acoustic speech features.

7.3. 4D Scene Generation and Editing

4D Scene Generation. General 4D scene generation implies that
no strong priors are used about types of objects and possible non-
rigid movements, or weak priors are combined with stronger ones
(e.g., in a compositional setting). We discuss two approaches in
this category that address this most general setting among all, i.e.,
MAV3D and Learnable Game Engines (LGE).

MAV3D [SSP∗23b] (see Fig. 1, top-right) extends DreamFu-
sion [PJBM22] with the time dimension for non-rigid NeRF scenes
generated from text. Similar to the 3D case, it is difficult to ac-
quire large datasets of 4D scenes that could be used to train
non-rigid scene generators, especially with paired textual annota-
tions. Hence, MAV3D relies on a pre-trained text-to-video diffu-
sion model [SPH∗22] (see Sec. 5) as a non-rigid “world scene
prior” that provides learnt distributions of multi-view scene pro-
jections (this is in contrast to [PJBM22] using a text-to-image
model). LGE [MSL∗23] is a neural model with game-engine-like
features learned from annotated videos. It follows a scene compo-
sition approach with the elements of playability (in the sense of
Playable Environments [MLS∗22]), scene editability and learning
game engine functionality from data. LGE supports the generation
of compositional 4D NeRFs (e.g., of a tennis match or a Minecraft-
like game) conditioned on a single RGB image and a wide spec-
trum of conditioning temporal signals (such as learned human ac-
tions, object locations, and textual action descriptions). In LGE,
the diffusion-based animation module predicts scene states condi-
tioned on user-provided actions, and the synthesis module renders
them from desired viewpoints. Compared to MAV3D, LGE gener-
ates scenes of higher visual fidelity and with finer-grained control,
at the cost of scenario-specific datasets with textual annotations.

4D Editing. Control4D [SSP∗23a] can edit 4D human portraits
from text inputs provided as implicit Tensor4D [SZT∗23] scene
representations. The method utilizes a 2D diffusion-based prior
(editor) to train a 4D GAN that is applied at test time to the ren-
dered 2D views of the dynamic (animated) portrait scenes. Note
that the diffusion-based editor does not directly operate on the ren-
dered images, and this design choice is done for the 4D GAN to
ensure that the edits are temporally consistent. While the results
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of Control4D are also photo-realistic, it can be noticed that they
preserve only a few characteristics of the original identity, i.e., the
edits are dominated by the textual prompts, especially in the head
area. A critical reader might ask to what extent the input portraits
influence the edited results and whether they could not have been
obtained by further refining the textual prompts.

This aspect is substantially improved in another work titled
AvatarStudio [MPE∗23] that performs editing of human head
avatars in a photo-realistic and temporally consistent manner while
preserving the initial identity (see Fig. 1, second row on the right).
AvatarStudio accepts as input a high-resolution 360◦ non-rigid
NeRF and uses an LDM [RBL∗22] fine-tuned with viewpoints and
time stamps randomly sampled from the NeRF volume as well
as view-and-time aware SDS loss with a model-based classifier-
free guidance. The method edits the full head performance in the
canonical space and propagates the edits to all time steps via a
pre-trained deformation network. AvatarStudio enables personal-
ized and photo-realistic edits that preserve the initial head identity
while transferring (or mixing in) the visual appearance features as-
sociated with the prompted identity (e.g., “Vincent van Gogh” or
the literature/movie character “Cruella de Vil”) or qualitative scene
descriptions (e.g., “bronze bust”, “marble statue” or “blue hair”).

8. Data

In this section, we briefly review datasets commonly used for train-
ing and evaluating 3D and 4D diffusion models.

Image Datasets. Image datasets play a pivotal role in the train-
ing and validation of diffusion models for visual computing ap-
plications. High-quality, diverse, and large-scale image datasets,
accompanied by rich semantic information, such as class or se-
mantic (instance) labels [DDS∗09, LMB∗14], ensure that trained
models can generalize across many image modalities. As the de-
mand for labeled images grows, the scale of such datasets con-
tinues to expand. In particular, the combination of image and text
data has been an important source of training data in the context
of diffusion models, since such data can be crawled from the web
at large scale and typically does not rely on manual annotations.
Notable large-scale image datasets include the Wikipedia-based
Image Text (WIT) [SRC∗21], a curated set of 37.6 million rich
image–text examples with 11.5 million unique images across 108
Wikipedia languages, the LAION-400M open dataset [SVB∗21]
of 400 million CLIP-Filtered image-text pairs, and its successor
LAION-5B [SBV∗22] which expands the collection to 5.85 billion.

Video Datasets. Publicly available video datasets with textual
descriptions, such as WebVid-10M [BNVZ21] and HD-VILA-
100M [XHZ∗22], are of great importance for training video dif-
fusion models. These datasets contain 10M and 100M text–video
pairs, respectively, which is more than an order of magnitude
smaller than available text–image datasets. For this reason, many
T2V models are trained with both images and videos, treating im-
ages as individual video frames. Alternatively, a pre-trained T2I
model can be refined with a smaller amount of training data (see
Sec. 5 for more details). At the same time, these datasets can be
augmented with the vast amount of unlabeled video data available
on the web.

Shape Datasets. In contrast to their image-based counterparts,
3D datasets are often constrained by the paucity of training sam-
ples, primarily due to the high cost associated with obtaining 3D
models. A key dataset in this domain is ShapeNet [CFG∗15],
which comprises 51.3k models across 55 object categories and
has been enriched with part segmentation and textual annota-
tions [AFH∗19,CCS∗19,KHA∗22,AHS∗23]. Another widely-used
dataset is Amazon Berkley Objects (ABO) [CGD∗22], which em-
phasizes texture quality and encompasses 8k 3D models from
63 classes, serving as a training ground for object-level geome-
try and appearance generative models. While these datasets offer
synthetic models that provide abundant training data and ground-
truth geometry, they also introduce a synthetic-to-real gap. To mit-
igate this, CO3D [RSH∗21] and OmniObject3D [WZF∗23] ac-
quired large-scale real objects. While CO3D contains 19k objects,
it only provides multi-view captures, whereas OmniObject3D of-
fers 6,000 high-quality scanned 3D objects across 190 categories,
complete with textured mesh and point clouds. However, the most
ambitious endeavor in this space of object-level 3D data is Obja-
verse and Objaverse-XL [DSS∗22, DLW∗23], boasting over 10M
3D models sourced from Sketchfab [Ske23], accompanied by a
large-scale text corpus. Despite its unprecedented scale, the dataset
presents challenges due to the heterogeneous quality of 3D mod-
els and text descriptions, as well as non-uniform data distribu-
tion, thus complicating the effective utilization of these large-
scale resources. For a scene-scale generation, data collection is
even more challenging. While seminal datasets such as Scan-
Net [DCS∗17], Matterport3D [CDF∗17], ScanNet++ [YLND23],
and RealEstate10k [ZTF∗18] rely on 3D scanning real environ-
ments, others focus on building on crowd-sourced web designs
for scene modeling, such as 3D Front [FCG∗21]. In practice,
however, many existing approaches in this space do not (yet)
generate an actual 3D scene but rather a video rendering of
the scene, which requires the camera trajectory and the corre-
sponding RGB(D) images for supervision. VizDoom [KWR∗16],
Replica [SWM∗19], Carla [DRC∗17], VLN-CE [KWM∗20], and
ARKitScenes [BCD∗21] are some examples of such datasets,
where the training sequence is generated through a simulated or
captured camera motion in synthetic or reconstructed static 3D
scenes. However, these datasets are still severely limited in di-
versity and annotations. The autonomous driving industry is in an
ideal position to capture diverse real-world data; however, such data
is typically treated as a proprietary asset and not publicly avail-
able. We also provide references to smaller datasets that have been
used in approaches mentioned in Sec. 6.1: BuildingNet [SNL∗21],
Pix3D [SWZ∗18], Photoshape [PRFS18], CLEVR [JHVDM∗17].
These datasets complement ShapeNet in terms of geometric scale
and complexity, as well as rendering realism, and annotation avail-
ability.

4D and Human Motion Datasets. Another important set of
datasets are those focusing on 3D capture in motion [LTT∗21,
BZTN20]. Although the human body spans many possible mo-
tions, 3D human motion is expensive to acquire, and hence datasets
remain scarce. In the context of humans, most current sizable
datasets are based on AMASS [MGT∗19], which is a collection
of other datasets acquired by different technologies, all aligned
to a uniform representation [LMR∗15]. In total, these recordings
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contain over 40 hours and comprise 11k sequences; however, this
alignment does not include any labeling. Hence, other datasets
[PMA16, PCA∗21, GZZ∗22] have sought to textually annotate it.
These datasets include richer and cleaner data, with more elab-
orate textual descriptions. Although already large, these datasets
still do not capture the full expressiveness of human motion. A
more elaborate dataset has recently been released [LZL∗23b], con-
sisting of an order of magnitude more data, and more expres-
sive annotations that include hand motions and facial expressions.
As literature exploring the capabilities of this dataset is still in
its infancy, it is too soon to predict the impact it will have on
the field. At the same time, higher-fidelity animation sequences
from 3D scans or multi-view capture setups have been released
in the context of human faces [GKG∗23, KQG∗23] and bod-
ies [PZX∗21, IRG∗23, LHR∗21, HLX∗21, HXZ∗20, XCZ∗18]. Al-
though these datasets are of high quality for each captured instance,
the costly recording process limits the largest of such datasets to
several hundred captured people. A new dataset with audio and
high-quality 3D motion capture with various dance genres for 3D
human motion generation tasks was introduced in Alexanderson
et al. [ANBH23]. AIST++ [LYRK21] is another dataset of people
dancing widely used in 3D human motion generation.

The CIRCLE dataset [ALV∗23] utilizes optical motion capture
and virtual reality to capture 3D human motions in cluttered indoor
environments, paired with an egocentric view of the scene. A very
large dataset of speech-aligned 3D face, body and hand motion ex-
tracted from talk show host videos is presented in [HXM∗21]. Fi-
nally, the OMOMO dataset [LYC∗23] contains more than 10 hours
of full-body manipulation of various objects, including pushing fur-
niture, carrying household objects, manipulating cleaning equip-
ment and more.

9. Metrics

This section briefly discusses the metrics used for evaluating the
reviewed methods with diffusion models.

Image Quality and Diversity. Robust evaluation of image diffu-
sion models requires the use of specific metrics that can effectively
capture both the quality and diversity of the generated samples.
Widely adopted metrics for gauging diversity and fidelity of image
diffusion models include Inception Score (IS) [SGZ∗16], Fréchet
Inception Distance (FID) [HRU∗17] and Kernel Inception Distance
(KID) [BSAG21]. IS aims at capturing quality and diversity under a
single metric by analyzing the distribution of labels obtained from a
pre-trained classifier [SVI∗15]. FID computes the Fréchet distance
between inception features [SVI∗15] derived from a set of real and
synthesised images under the assumption that the feature vectors
follow a Gaussian distribution. KID aims to improve on FID by re-
laxing the Gaussian assumption, directly measuring the Maximum
Mean Discrepancy (MMD) between the two feature sets. Despite
their popularity, inception-based metrics face several fundamental
limitations. For instance, such metrics are reliant on the Inception-
v3 pre-trained model, which could inherit biases depending on how
the model was trained.

With the introduction of large-scale T2I diffusion models, gen-
eralization capabilities must also be taken into consideration. Zero-

Shot FID [SCS∗22] provides a solution to this, evaluating FID for
images generated from a subset (30k in Saharia et al. [SCS∗22]) of
unseen prompts taken from the validation set and comparing them
with reference images from the full validation set.

Conventional metrics for evaluating image quality include
PSNR, SSIM, and LPIPs. PSNR measures the peak signal-to-
noise ratio, SSIM measures the structural similarity, and LPIPs
captures the perceived similarity based on learned features be-
tween two images. Recent methods also provide mid and high-
level metrics that compare images, such as DreamSim [FTS∗23]
and CLIP [RKH∗21]. However, such metrics are only applicable
when ground truth images are available for comparison, i.e., re-
construction tasks. In the context of evaluating generative models,
these metrics are rarely used directly.

Video Quality and Diversity. Naturally, the aforementioned im-
age metrics have been extended to video, most notably using the
Fréchet video distance (FVD) [UVSK∗18] (e.g., implemented by
the I3D network [CZ17]). FVD is often reported in conjunction
with (video) IS. T2V datasets that are smaller than the large train-
ing sets, such as UCF101 [SZS12] and MSR-VTT [XMYR16], are
often used to evaluate IS and FVD scores.

As noted in several works, e.g., [BHA∗22,BRL∗23], FVD is sen-
sitive to the realism of individual frames and motion over short seg-
ments, but it does not capture long-term realism. Unrealistic repeti-
tions over time, for example, are not penalized. Moreover, as noted
by [STE22], FVD is highly sensitive to small implementation dif-
ferences, implying that reported results between papers are not al-
ways directly comparable. To address these challenges, many T2V
approaches use human evaluation in addition to IS and FVD, as
discussed below.

Evaluating 3D Object Fidelity. The first option is to use FID and
KID on the multiple renderings of the 3D models. Given a suitable
encoder, FID can be applied to the latent space of the 3D mod-
els to directly measure the quality and diversity. P-FID, for exam-
ple, uses PointNet++ [QYSG17] as the encoder to obtain the latent
representation from pre-sampled points on the surface of the 3D
models. For conditioned generation, such as single-view 3D recon-
struction, ground truth multi-view images are often available. In
this case, PSNR, LPIPS and other conventional image quality met-
rics are applied for the evaluation of novel view synthesis, whereas
shape reconstruction metrics such as Chamfer Distance, F-Score,
and Intersection of Union (IoU) are used to measure geometry ac-
curacy. In case the text or image condition does not have ground
truth, which is the more general case, prompt fidelity becomes the
main metric. It measures the alignment of the generation with the
conditional input, e.g., text and image. Similar to FID, one can fall
back to measure image-prompt fidelity (see the Prompt Fidelity
paragraph below) by using the renderings of the generated 3D mod-
els as a proxy. Recently, with the development of joint shape-text-
image embedding space, e.g., in [ZLC∗23] and [XGX∗23], it is
possible to directly assess the shape-prompt fidelity,e.g., Shape-
Image Score (SI-S) and Shape-Text Score (ST-S), by comparing
the embedding of shape and the conditional inputs on a pre-trained
shape-text-image embedding space.
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Evaluating Animated and Articulated Objects. Lei et
al. [LDS∗23] introduced the Instantiation Distance (ID) for
measuring the similarity between a pair of articulated objects. This
metric considers the part-level geometry and the object motion
patterns. The physical realism of generated motion can be evalu-
ated by physics-based metrics. For this purpose, EDGE [TCL23]
proposed a metric to measure the dynamic realism of the motion.
Diversity (Div), Multi-Modality (MM) and Beat Alignment Score
(BAS) [LYRK21] are widely used metrics for the evaluation of
3D human dance motions. The core idea of BAS is to assess
how close the kinematic beats (i.e., directional changes of the
per-joint velocity vectors) coincide with the music beats. Note,
however, that in many dancing styles, kinematic beats deliberately
do not coincide with music beats. Hence, BAS should be used in
combination with other metrics (FID, Div and MM).

Human Evaluation. The standard metrics discussed above, in-
cluding FID and FVD, are unreliable at best and should be consid-
ered proxy metrics. For this reason, many papers describing new
diffusion models also perform human evaluation by running user
studies. Oftentimes, the users are asked to subjectively evaluate
image or video “quality” and “faithfulness” (e.g., with respect to a
prompt) or they are asked to directly compare and rank two or more
images based on some metric. These types of user user studies are
difficult to replicate and resource intense to conduct, as discussed
in more detail in the next section on open challenges.

Prompt Fidelity. As conditional generation using text prompts is
one of the most popular applications of the diffusion model, it is im-
portant to evaluate the faithfulness of the generated content with re-
spect to the text prompt. To measure the faithfulness of a generated
image with respect to the text prompt condition, the average cosine
similarity between prompt and image CLIP [RKH∗21] embeddings
is often computed. Similarly, CLIPSIM [WLJ∗22] measures the
average CLIP similarity between generated video frames and text
with T2V models. Similar metrics have also been proposed to mea-
sure alignment of edited images and human instructions [BHE23].

Identity Preservation. To assess multi-view facial identity (ID)
consistency for generated 3D faces, the mean ArcFace [DGXZ19]
cosine similarity score between pairs of views of the same syn-
thesized face rendered from random camera poses is the de-facto
standard metric. When reference images are available for gener-
ated identities—as is the case when finetuning diffusion models on
a few images of a specific subject—the average pairwise cosine
similarity between CLIP embeddings of generated and real (refer-
ence) images of the same subject can be used to evaluate the ID
consistency. Note, however, that this approach is not constructed to
distinguish between different subjects that could have highly simi-
lar text descriptions (e.g., two different yellow clocks). For this rea-
son, [RLJ∗22] proposed to also evaluate ID consistency using the
average pairwise cosine similarity between ViTS/16 DINO embed-
dings of generated and real images. The advantage of this metric is
that DINO [CTM∗21] is not trained to ignore differences between
subjects of the same class by design.

10. Open Challenges

Despite the immense progress made in generative models in recent
years, there remain a large number of unsolved problems. In this
section, we detail some prominent ones, although many more exist
and are described in greater detail in the references cited throughout
this report.

Evaluation Metrics. As discussed before, standard image and
video quality metrics, such as FID and FVD, are not always well
aligned with human judgement, and often make undesirable as-
sumptions about the distributional similarity across datasets. De-
spite this, available alternatives are not much better: comparative
metrics like PSNR and LPIPs require matching ground-truth pairs,
and conducting a user study can be costly, time-consuming, and of-
ten not much more informative. One direction for obvious improve-
ment in this domain is the creation of better metrics that reliably and
automatically assess the quality and diversity of generated content.
These metrics should be applicable to a variety of data types, such
2D images, video, 3D, and dynamic 3D scenes. Furthermore, they
should be aligned with human preferences, to enable faster, auto-
mated progress on method development without regular human in-
tervention.

Training Data. Captioned image data is available in abundance,
but labeled training data for 3D, video, and 4D generation is scarce.
This makes it difficult to train higher-dimensional generative mod-
els. Open problems remain in the collection of large-scale datasets,
whether they be explicitly in higher dimensions (e.g., a large set of
3D models), or lower-dimensional projections of this data that can
be used for learning high-dimensional priors (e.g., a large dataset
of multi-view images). Both options require additional research
in their corresponding training protocols—large-scale 3D datasets
will undoubtedly have domain gaps with real-world scenes (since
it will be difficult to match the diversity of real-world scenes),
and large-scale multi-view datasets may not encode the same dis-
tribution of 3D-consistent scenes. The ideal training protocol and
dataset may even be a combination of these options, or trained in
stages, as is common with inflated models.

Another way to frame this decision is as an option of quality
versus quantity. Can diffusion models leverage weaker supervision
from a larger amount of training samples more effectively than
stronger supervision from fewer samples? For instance, large lan-
guage models trained on text leverage trillions of training samples,
while image generation models are trained with only billions of im-
ages, and video models with even fewer. Multi-view datasets and
3D datasets provide more supervision than monocular video cap-
tures, but available datasets are at least yet another order of magni-
tude smaller in size. One may consider opting for a smaller, more
informative dataset and instead choose to tackle the problem of data
efficiency: the ability of a generative model to generalize in low-
data regimes.

Efficiency. Inference-time sampling speed continues to be a con-
cern for diffusion-based generative models. Where other gener-
ative methods (e.g., GANs) only require a single forward pass
of a neural network, diffusion models can require up to thou-
sands [DN21, HJA20] of network evaluations to produce a sin-
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gle generated result. The sequential nature of the forward and re-
verse diffusion processes poses as a fundamental bottleneck for ef-
ficiency. A straightforward method for increasing sampling speed
is by designing newer, lightweight efficient architectures, such that
fewer time is spent on each denoising step [LWJ∗23]. Distillation
is another category of technique that aims to achieve the same re-
sult. Salimans et al. [SH22] and Meng et al. [MRG∗23] distill a
pre-trained diffusion model into a model that requires fewer sam-
pling steps. Consistency Models [SDCS23], TRACT [BAL∗23],
and BOOT [GZZ∗23] take this to the extreme, proposing single-
step generation distilled from pre-trained diffusion samplers. The
question of how to generate the highest-quality output in the most
efficient manner, however, remains an unsolved problem.

Training efficiency also poses a concern. The majority of exist-
ing models are currently trained at scale by corporations with large
computational resource pools. Exploring solutions for reducing the
training compute requirements remains a very valuable open prob-
lem, as training specialized models for targeted applications is cur-
rently out of reach for most researchers.

Controllability. As discussed in Maneesh Agrawala’s blog
post [Agr23], most diffusion models are unpredictable black boxes.
Most models are conditioned only on text prompts, and therefore
require extensive prompt engineering to generate a desired image.
Furthermore, text input alone often does not offer sufficient control
to specify a particular image’s exact appearance. This poor inter-
face typically results in a lengthy trial-and-error process. A conver-
sational interface is a suitable alternative. Explored briefly in In-
structPix2Pix [BHE23] and further developed in Dall-E3 [Ope23b],
conversations and instructions allow for relative and intuitive ad-
justments to a current image. This process of aligning generations
with human intentions largely remains an open problem.

Other existing forms of control include matched prompt edit-
ing [HMT∗22], conditioning (Sec. 3.3), customization (Sec. 3.4),
and guidance [EJP∗23]. These are all effective strategies to make
diffusion models more controllable and predictable, better enabling
a user to achieve a desired image, but are far from a polished so-
lution. Designing better and more intuitive interfaces around diffu-
sion models that provide generalized control and predictable out-
puts remains an important open challenge.

Physical Grounding. Controlling, constraining, or guiding diffu-
sion models to adhere to the rules of physics is also a promising
direction. Certain modalities, such as 3D geometry and motion are
heavily constrained by the physics of the underlying scene they
model. In practice, these physical properties and rules can be em-
bedded in the training process or network design to encourage gen-
erations to be more plausible. GANs, for example, have greatly
benefited from being constrained by the physics of projective ge-
ometry, non-rigid object deformation, and physically based light-
ing to enable the training of 3D-aware models from single-view
2D image datasets [NPLT∗19,CMK∗21] to generate articulated 3D
characters [WLJ∗23, BKY∗22, YSI∗23] or re-lightable digital hu-
mans [DWW23, WHZZ23], respectively. Exploring similar uses of
diffusion models, e.g., by leveraging a model’s emergent geome-
try or correspondences [TJW∗23,LDP∗23], is an encouraging open
challenge.

Robustness and Reproducibility. Despite the meteoric advance-
ments in the field, catalyzed by seminal works such as DALL-E
2 [Ope23a] and Imagen [SCS∗22], a disconcerting discrepancy
persists between officially publicized results and those obtained
through independent reproduction, even when employing the of-
ficially released code. This gap is often bridged through manual
prompt manipulation, hyper-parameter optimization, and random
seed manipulation—practices that have regrettably become tacit yet
universally accepted methods for achieving favorable outcomes.
This inflation of success is especially detrimental in optimization-
based paradigms, including text-to-3D generation, and is exacer-
bated by the prevailing competitive ethos within the research com-
munity. Consequently, the imperative to develop robust and repro-
ducible algorithms that fundamentally ameliorate these issues can-
not be overstated.

11. Social Implications and Ethical Concerns

Distribution of Harmful Content. Generative AI tools automate
the process of content creation with photorealistic quality. This
ability could be used to generate fake photos or videos of real peo-
ple (DeepFakes). DeepFakes pose a societal threat that could be
used for harm, either intentional or unintentional. Anyone with un-
restricted access to generative AI tools could, for example, create
an image or video of a celebrity with the intention of tarnishing
their reputation.

A number of measures can be put in place to prevent the distri-
bution of harmful content. First, the ability of a user to generate
harmful content should be prevented as best as possible. Most im-
age generation models today, for example, prevent the generation
of content depicting violence, gore, harassment, drugs, adult con-
tent, and generally offensive topics. Second, forensic techniques
to detect DeepFakes are being developed by the AI community
(e.g., [AFG∗19, RCV∗19, FLK∗21]). As the quality of generative
AI tools advances, these types of efforts are becoming increasingly
important but also challenging.

Copyright, Legal Exposure, and Privacy Concerns. Foundation
models are trained on billions of images, including content that may
have been scraped without the consent of the creator, that may have
been legally protected otherwise, or that may contain personally
identifiable or sensitive information. Indeed, copyright infringe-
ment lawsuits have already been filed by artists against some of
the companies behind foundation models for visual computing.

Bias and Fairness. Similar to most machine learning methods,
diffusion models can inadvertently learn and perpetuate biases
present in their training data. This is a significant concern in terms
of fairness and ethical considerations; further research to develop
means to mitigate such biases is needed.

Environmental Concerns. Training foundation models requires
substantial computational resources. For example, the relatively
small StableDiffusion model was reportedly trained on 2.3 Billion
images using 256 Nvidia A100 GPUs on Amazon Web Services
for a total of 150,000 GPU-hours [Mos22]. According to unverified
sources, OpenAI’s large GPT-4 model was trained on about 25,000
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Nvidia A100 GPUs for 90–100 days, costing more than $100 Mil-
lion. The carbon footprint of training GPT-4 is estimated to be
between 12,456 and 14,994 metric tons of carbon dioxide equiv-
alent [Lud23]. For comparison, the average yearly carbon footprint
across humans on Earth is 4 tons. These considerations lead to sig-
nificant concerns about the environmental impact of training foun-
dation models.

Economic Impacts. As generative AI models become more inte-
grated into various sectors, there are concerns about their impact on
jobs and economic structures. For example, the ability to generate
high-quality digital doubles or, more generally, digital humans as
well as 3D scenes is expected to have a significant impact on video
production, the visual effects, among many other industries. Some
jobs in this creative industry may be displaced, but at the same
time new creative job profiles will arise and new ways to mone-
tize creative work will be arise through Generative AI. Generative
AI also automates many tasks that workers in other areas do to-
day. Although this is the case for many technologies, generative AI
raises concerns about worker displacements at an accelerated rate.

Explainability, Trust, and Accountability. Machine learning and
generative AI models learn correlations within their training data,
not causality. Therefore, it may be challenging to understand why
a model gave the answer it did. Moreover, generative AI models
can synthesize new data, which may not always be truthful, or the
models could be involuntarily trained on data that contains factual
errors. These issues call trustworthiness into question. Some out-
comes may even have legal consequences, raising questions of ac-
countability.

Researchers working in the field of generative AI must be cog-
nizant of these issues. Moreover, policy and lawmakers, industry,
and the research community must engage in a constructive dialogue
to set meaningful legal boundaries for the unprecedented capabili-
ties and dangers of emerging generative AI.

12. Discussion and Conclusion

In this state-of-the-art report, we have reviewed the theory and
practice of emerging diffusion models for visual computing. We
have introduced the basic mathematical concepts, implementation
details and design choices of popular diffusion models, and impor-
tant strategies for finetuning, sampling, conditioning and inversion,
among others. Moreover, we have given a comprehensive overview
of the rapidly growing literature in this space, categorized by the
type of generated medium, and discussed available datasets, met-
rics, open challenges, and social implications. Yet, this is an ex-
ploding field with papers and commercial models being released
on a weekly or even daily basis. Thus, we hope that this STAR
provides an intuitive starting point for the interested reader—artist,
practitioner, and researcher alike.

Although most of the numerous papers discussed in this STAR
have been published in the last (few) year(s) and all important as-
pects of diffusion models have seemingly been addressed, many
open challenges remain. Perhaps one of the highest-level goals of
the field of visual computing is to amplify the creative potential of
novice and advanced users alike and empower them to intuitively

convert their imagination into an image, video, or 3D scene. The
generative AI tools discussed in this STAR are a big step forward,
but the community still has much work ahead to achieving this goal.
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JAŚKOWSKI W.: Vizdoom: A doom-based ai research platform for vi-
sual reinforcement learning. In 2016 IEEE conference on computational
intelligence and games (CIG) (2016), IEEE, pp. 1–8. 19

[KZL∗23] KAWAR B., ZADA S., LANG O., TOV O., CHANG H.,
DEKEL T., MOSSERI I., IRANI M.: Imagic: Text-based real image edit-
ing with diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (2023), pp. 6007–6017. 7

[KZZ∗23] KUMARI N., ZHANG B., ZHANG R., SHECHTMAN E., ZHU
J.-Y.: Multi-concept customization of text-to-image diffusion. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (2023), pp. 1931–1941. 7

[Lab23] LAB D.: Deepfloyd if. https://github.com/
deep-floyd/IF, 2023. 1

[LCW∗23] LI X., CHU W., WU Y., YUAN W., LIU F., ZHANG Q., LI
F., FENG H., DING E., WANG J.: Videogen: A reference-guided latent
diffusion approach for high definition text-to-video generation, 2023.
arXiv:2309.00398. 8

[LCZ∗23] LUO Z., CHEN D., ZHANG Y., HUANG Y., WANG L., SHEN
Y., ZHAO D., ZHOU J., TAN T.: Videofusion: Decomposed diffu-
sion models for high-quality video generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2023), pp. 10209–10218. 9

[LDP∗23] LUO G., DUNLAP L., PARK D. H., HOLYNSKI A., DAR-
RELL T.: Diffusion hyperfeatures: Searching through time and space for
semantic correspondence. arXiv preprint arXiv:2305.14334 (2023). 22

[LDS∗23] LEI J., DENG C., SHEN B., GUIBAS L., DANIILIDIS K.:
Nap: Neural 3d articulation prior. arXiv e-prints (2023). 16, 21

[LDZL23] LI M., DUAN Y., ZHOU J., LU J.: Diffusion-SDF: Text-to-
shape via voxelized diffusion. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (2023), pp. 12642–
12651. 11, 12

[LGT∗23] LIN C.-H., GAO J., TANG L., TAKIKAWA T., ZENG X.,
HUANG X., KREIS K., FIDLER S., LIU M.-Y., LIN T.-Y.: Magic3d:
High-resolution text-to-3d content creation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2023), pp. 300–309. 14

[LH21] LUO S., HU W.: Diffusion probabilistic models for 3d point
cloud generation. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2021), pp. 2837–2845. 11, 12

[LHR∗21] LIU L., HABERMANN M., RUDNEV V., SARKAR K., GU J.,
THEOBALT C.: Neural actor: Neural free-view synthesis of human actors
with pose control. ACM Trans. Graph.(ACM SIGGRAPH Asia) (2021).
20

http://arxiv.org/abs/2009.05475
http://arxiv.org/abs/2305.03027
https://doi.org/10.48550/arXiv.2305.03027
https://doi.org/10.48550/arXiv.2305.03027
http://arxiv.org/abs/2307.07511
https://github.com/deep-floyd/IF
https://github.com/deep-floyd/IF
http://arxiv.org/abs/2309.00398


28 R. Po & W. Yifan & V. Golyanik et al. / State of the Art on Diffusion Models for Visual Computing

[LJC∗23] LEE Y.-C., JANG J.-Z. G., CHEN Y.-T., QIU E., HUANG J.-
B.: Shape-aware text-driven layered video editing. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2023), pp. 14317–14326. 10

[LLZ∗23] LIU Y., LIN C., ZENG Z., LONG X., LIU L., KOMURA T.,
WANG W.: Syncdreamer: Learning to generate multiview-consistent im-
ages from a single-view image. arXiv preprint arXiv:2309.03453 (2023).
15

[LMB∗14] LIN T.-Y., MAIRE M., BELONGIE S., HAYS J., PERONA P.,
RAMANAN D., DOLLÁR P., ZITNICK C. L.: Microsoft coco: Com-
mon objects in context. In Computer Vision–ECCV 2014: 13th Euro-
pean Conference, Zurich, Switzerland, September 6-12, 2014, Proceed-
ings, Part V 13 (2014), Springer, pp. 740–755. 19

[LMR∗15] LOPER M., MAHMOOD N., ROMERO J., PONS-MOLL G.,
BLACK M. J.: SMPL: A skinned multi-person linear model. ACM Trans.
Graphics (Proc. SIGGRAPH Asia) 34, 6 (Oct. 2015), 248:1–248:16. 19

[LTJ∗21] LIU A., TUCKER R., JAMPANI V., MAKADIA A., SNAVELY
N., KANAZAWA A.: Infinite nature: Perpetual view generation of natural
scenes from a single image. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV) (October 2021). 15

[LTLH19] LIU Z., TANG H., LIN Y., HAN S.: Point-voxel cnn for ef-
ficient 3d deep learning. Advances in Neural Information Processing
Systems 32 (2019). 13

[LTSH23] LI Z., TUCKER R., SNAVELY N., HOLYNSKI A.: Generative
image dynamics. arXiv preprint arXiv:2309.07906 (2023). 9

[LTT∗21] LI Y., TAKEHARA H., TAKETOMI T., ZHENG B., NIESSNER
M.: 4dcomplete: Non-rigid motion estimation beyond the observable
surface. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (2021), pp. 12706–12716. 19

[Lud23] LUDVIGSEN K. G. A.: The carbon foot-
print of gpt-4. Towards Data Science, 2023.
https://medium.com/towards-data-science/
the-carbon-footprint-of-gpt-4-d6c676eb21ae. 23

[LWH∗23] LIU R., WU R., HOORICK B. V., TOKMAKOV P., ZA-
KHAROV S., VONDRICK C.: Zero-1-to-3: Zero-shot one image to 3d
object. ArXiv abs/2303.11328 (2023). 15

[LWJ∗23] LI Y., WANG H., JIN Q., HU J., CHEMERYS P., FU Y.,
WANG Y., TULYAKOV S., REN J.: Snapfusion: Text-to-image dif-
fusion model on mobile devices within two seconds. arXiv preprint
arXiv:2306.00980 (2023). 22

[LWL23] LI J., WU J., LIU C. K.: Object motion guided human motion
synthesis. ACM Transactions on Graphics (SIGGRAPH Asia) (2023). 17

[LWSK22] LI Z., WANG Q., SNAVELY N., KANAZAWA A.:
Infinitenature-zero: Learning perpetual view generation of natural
scenes from single images. In ECCV (2022). 15

[LYC∗23] LU C., YIN F., CHEN X., LIU W., CHEN T., YU G., FAN
J.: A large-scale outdoor multi-modal dataset and benchmark for novel
view synthesis and implicit scene reconstruction. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (2023),
pp. 7557–7567. 20

[LYRK21] LI R., YANG S., ROSS D. A., KANAZAWA A.: Ai choreog-
rapher: Music conditioned 3d dance generation with aist++, 2021. 17,
20, 21

[LYX∗23] LIAO T., YI H., XIU Y., TANG J., HUANG Y., THIES J.,
BLACK M. J.: Tada! text to animatable digital avatars. ArXiv (Aug
2023). 16

[LYZ∗23] LIEW J. H., YAN H., ZHANG J., XU Z., FENG J.: Magicedit:
High-fidelity and temporally coherent video editing. In arXiv (2023). 9

[LZCVDP20] LING H. Y., ZINNO F., CHENG G., VAN DE PANNE M.:
Character controllers using motion vaes. ACM Transactions on Graphics
(TOG) 39, 4 (2020), 40–1. 17

[LZL∗23a] LIANG H., ZHANG W., LI W., YU J., XU L.: Intergen:
Diffusion-based multi-human motion generation under complex interac-
tions. arXiv e-prints (2023). 18

[LZL∗23b] LIN J., ZENG A., LU S., CAI Y., ZHANG R., WANG H.,
ZHANG L.: Motion-x: A large-scale 3d expressive whole-body human
motion dataset, 2023. arXiv:2307.00818. 20

[LZL∗23c] LIU S., ZHANG Y., LI W., LIN Z., JIA J.: Video-p2p: Video
editing with cross-attention control. arXiv:2303.04761 (2023). 9

[LZW∗23] LI C., ZHANG C., WAGHWASE A., LEE L.-H., RAMEAU F.,
YANG Y., BAE S.-H., HONG C. S.: Generative ai meets 3d: A survey
on text-to-3d in aigc era. arXiv preprint arXiv:2305.06131 (2023). 2

[MCST22] MITTAL P., CHENG Y.-C., SINGH M., TULSIANI S.: Au-
toSDF: Shape priors for 3d completion, reconstruction and generation.
In CVPR (2022). 11

[MGT∗19] MAHMOOD N., GHORBANI N., TROJE N. F., PONS-MOLL
G., BLACK M. J.: Amass: Archive of motion capture as surface shapes.
In Proceedings of the IEEE/CVF international conference on computer
vision (2019), pp. 5442–5451. 19

[MHA∗23] MOKADY R., HERTZ A., ABERMAN K., PRITCH Y.,
COHEN-OR D.: Null-text inversion for editing real images using guided
diffusion models. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (2023), pp. 6038–6047. 4, 7

[MHS∗21] MENG C., HE Y., SONG Y., SONG J., WU J., ZHU J.-Y.,
ERMON S.: Sdedit: Guided image synthesis and editing with stochastic
differential equations. arXiv preprint arXiv:2108.01073 (2021). 6

[Mid23] MIDJOURNEY: Midjourney. https://www.midjourney.
com/, 2023. 2

[MLS∗22] MENAPACE W., LATHUILIÈRE S., SIAROHIN A.,
THEOBALT C., TULYAKOV S., GOLYANIK V., RICCI E.: Playable
environments: Video manipulation in space and time. In Computer
Vision and Pattern Recognition (2022). 18

[Mos22] MOSTAQUE E.: Twitter post, 2022. URL:
https://twitter.com/emostaque/status/
1563870674111832066. 22

[MPE∗23] MENDIRATTA M., PAN X., ELGHARIB M., TEOTIA K., R
M. B., TEWARI A., GOLYANIK V., KORTYLEWSKI A., THEOBALT
C.: Avatarstudio: Text-driven editing of 3d dynamic human head avatars.
ACM ToG (SIGGRAPH Asia) (2023). 1, 16, 19

[MRC∗17] MEHTA D., RHODIN H., CASAS D., FUA P., SOTNY-
CHENKO O., XU W., THEOBALT C.: Monocular 3d human pose esti-
mation in the wild using improved cnn supervision. In 3D Vision (3DV),
2017 Fifth International Conference on (2017), IEEE. 17

[MRG∗23] MENG C., ROMBACH R., GAO R., KINGMA D. P., ERMON
S., HO J., SALIMANS T.: On distillation of guided diffusion models,
2023. arXiv:2210.03142. 22

[MRP∗23] METZER G., RICHARDSON E., PATASHNIK O., GIRYES R.,
COHEN-OR D.: Latent-nerf for shape-guided generation of 3d shapes
and textures. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2023), pp. 12663–12673. 14

[MSL∗23] MENAPACE W., SIAROHIN A., LATHUILIÈRE S., ACHLIOP-
TAS P., GOLYANIK V., RICCI E., TULYAKOV S.: Plotting behind the
scenes: Towards learnable game engines. arXiv e-prints (2023). 18

[MSP∗23] MÜLLER N., SIDDIQUI Y., PORZI L., BULO S. R.,
KONTSCHIEDER P., NIESSNER M.: Diffrf: Rendering-guided 3d ra-
diance field diffusion. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (2023), pp. 4328–4338. 1, 12

[MWS∗23] MOU C., WANG X., SONG J., SHAN Y., ZHANG J.: Drag-
ondiffusion: Enabling drag-style manipulation on diffusion models.
arXiv preprint arXiv:2307.02421 (2023). 7

[MWX∗23] MOU C., WANG X., XIE L., ZHANG J., QI Z., SHAN Y.,
QIE X.: T2i-adapter: Learning adapters to dig out more controllable abil-
ity for text-to-image diffusion models. arXiv preprint arXiv:2302.08453
(2023). 6

[ND21] NICHOL A. Q., DHARIWAL P.: Improved denoising diffusion
probabilistic models. In International Conference on Machine Learning
(2021), PMLR, pp. 8162–8171. 4

https://medium.com/towards-data-science/the-carbon-footprint-of-gpt-4-d6c676eb21ae
https://medium.com/towards-data-science/the-carbon-footprint-of-gpt-4-d6c676eb21ae
http://arxiv.org/abs/2307.00818
https://www.midjourney.com/
https://www.midjourney.com/
https://twitter.com/emostaque/status/1563870674111832066
https://twitter.com/emostaque/status/1563870674111832066
http://arxiv.org/abs/2210.03142


R. Po & W. Yifan & V. Golyanik et al. / State of the Art on Diffusion Models for Visual Computing 29

[NDR∗21] NICHOL A., DHARIWAL P., RAMESH A., SHYAM P.,
MISHKIN P., MCGREW B., SUTSKEVER I., CHEN M.: Glide: Towards
photorealistic image generation and editing with text-guided diffusion
models. arXiv preprint arXiv:2112.10741 (2021). 6

[NJD∗22] NICHOL A., JUN H., DHARIWAL P., MISHKIN P., CHEN M.:
Point-e: A system for generating 3d point clouds from complex prompts,
2022. arXiv:2212.08751[cs]. 11, 12, 13

[NPLT∗19] NGUYEN-PHUOC T., LI C., THEIS L., RICHARDT C.,
YANG Y.-L.: Hologan: Unsupervised learning of 3d representations
from natural images. In The IEEE International Conference on Com-
puter Vision (ICCV) (Nov 2019). 22

[NPLX22] NGUYEN-PHUOC T., LIU F., XIAO L.: Snerf: Stylized
neural implicit representations for 3d scenes. ACM Trans. Graph.
41, 4 (jul 2022). URL: https://doi.org/10.1145/3528223.
3530107, doi:10.1145/3528223.3530107. 15

[Ope23a] OPENAI: DALL·E 2 — openai.com. https://openai.
com/dall-e-2/, 2023. [Accessed 26-09-2023]. 2, 22

[Ope23b] OPENAI: DALL·E 3 — openai.com. https://openai.
com/dall-e-3, 2023. [Accessed 05-10-2023]. 2, 22

[OWX∗23] OUYANG H., WANG Q., XIAO Y., BAI Q., ZHANG J.,
ZHENG K., ZHOU X., CHEN Q., SHEN Y.: Codef: Content deforma-
tion fields for temporally consistent video processing. arXiv preprint
arXiv:2308.07926 (2023). 10

[PCA∗21] PUNNAKKAL A. R., CHANDRASEKARAN A., ATHANASIOU
N., QUIROS-RAMIREZ A., BLACK M. J.: BABEL: Bodies, action and
behavior with english labels. In Proceedings IEEE/CVF Conf. on Com-
puter Vision and Pattern Recognition (CVPR) (June 2021), pp. 722–731.
20

[PCG∗19] PAVLAKOS G., CHOUTAS V., GHORBANI N., BOLKART T.,
OSMAN A. A. A., TZIONAS D., BLACK M. J.: Expressive body cap-
ture: 3D hands, face, and body from a single image. In Proceedings
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (2019),
pp. 10975–10985. 16

[PJBM22] POOLE B., JAIN A., BARRON J. T., MILDENHALL
B.: Dreamfusion: Text-to-3d using 2d diffusion. arXiv preprint
arXiv:2209.14988 (2022). 1, 14, 15, 18

[PKSZ∗23] PARMAR G., KUMAR SINGH K., ZHANG R., LI Y., LU J.,
ZHU J.-Y.: Zero-shot image-to-image translation. In ACM SIGGRAPH
2023 Conference Proceedings (2023), pp. 1–11. 7

[PLWZ19] PARK T., LIU M.-Y., WANG T.-C., ZHU J.-Y.: Semantic
image synthesis with spatially-adaptive normalization, 2019. arXiv:
1903.07291. 5

[PMA16] PLAPPERT M., MANDERY C., ASFOUR T.: The kit motion-
language dataset. Big data 4, 4 (2016), 236–252. 20

[PNM∗20] PENG S., NIEMEYER M., MESCHEDER L., POLLEFEYS M.,
GEIGER A.: Convolutional occupancy networks. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part III 16 (2020), Springer, pp. 523–540. 13

[PRFS18] PARK K., REMATAS K., FARHADI A., SEITZ S. M.: Photo-
shape: Photorealistic materials for large-scale shape collections. arXiv
preprint arXiv:1809.09761 (2018). 19

[PTL∗23] PAN X., TEWARI A., LEIMKÜHLER T., LIU L., MEKA A.,
THEOBALT C.: Drag your gan: Interactive point-based manipulation on
the generative image manifold. In ACM SIGGRAPH 2023 Conference
Proceedings (2023). 7

[PW23] PO R., WETZSTEIN G.: Compositional 3d scene generation us-
ing locally conditioned diffusion. ArXiv abs/2303.12218 (2023). 1, 15

[PZX∗21] PENG S., ZHANG Y., XU Y., WANG Q., SHUAI Q., BAO H.,
ZHOU X.: Neural body: Implicit neural representations with structured
latent codes for novel view synthesis of dynamic humans. In CVPR
(2021). 20

[QCZ∗23] QI C., CUN X., ZHANG Y., LEI C., WANG X., SHAN Y.,
CHEN Q.: Fatezero: Fusing attentions for zero-shot text-based video
editing. arXiv:2303.09535 (2023). 9, 10

[QYSG17] QI C. R., YI L., SU H., GUIBAS L. J.: Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. Advances in
neural information processing systems 30 (2017). 20

[RAY∗16] REED S., AKATA Z., YAN X., LOGESWARAN L., SCHIELE
B., LEE H.: Generative adversarial text to image synthesis, 2016.
arXiv:1605.05396. 5

[RBH∗21] REMPE D., BIRDAL T., HERTZMANN A., YANG J., SRID-
HAR S., GUIBAS L. J.: Humor: 3d human motion model for robust pose
estimation. In Proceedings of the IEEE/CVF international conference on
computer vision (2021), pp. 11488–11499. 17

[RBL∗22] ROMBACH R., BLATTMANN A., LORENZ D., ESSER P.,
OMMER B.: High-resolution image synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition (2022), pp. 10684–10695. 2, 5, 6, 8, 19

[RCV∗19] ROSSLER A., COZZOLINO D., VERDOLIVA L., RIESS C.,
THIES J., NIESSNER M.: Faceforensics++: Learning to detect manipu-
lated facial images. In Proceedings of the IEEE/CVF international con-
ference on computer vision (2019), pp. 1–11. 22

[RFB15] RONNEBERGER O., FISCHER P., BROX T.: U-net: Convolu-
tional networks for biomedical image segmentation. MICCAI (2015).
5

[RKH∗21] RADFORD A., KIM J. W., HALLACY C., RAMESH A., GOH
G., AGARWAL S., SASTRY G., ASKELL A., MISHKIN P., CLARK J.,
ET AL.: Learning transferable visual models from natural language su-
pervision. ICML (2021). 2, 7, 20, 21

[RKP∗23] RAJ A., KAZA S., POOLE B., NIEMEYER M., MILDENHALL
B., RUIZ N., ZADA S., ABERMAN K., RUBENSTEIN M., BARRON
J. T., LI Y., JAMPANI V.: Dreambooth3d: Subject-driven text-to-3d gen-
eration. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV) (2023). 15

[RLBP∗23] REMPE D., LUO Z., BIN PENG X., YUAN Y., KITANI K.,
KREIS K., FIDLER S., LITANY O.: Trace and pace: Controllable pedes-
trian animation via guided trajectory diffusion. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2023), pp. 13756–13766. 17

[RLJ∗22] RUIZ N., LI Y., JAMPANI V., PRITCH Y., RUBINSTEIN M.,
ABERMAN K.: Dreambooth: Fine tuning text-to-image diffusion models
for subject-driven generation. 2023 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (2022), 22500–22510. 1, 7, 15,
21

[RLJ∗23] RUIZ N., LI Y., JAMPANI V., WEI W., HOU T., PRITCH Y.,
WADHWA N., RUBINSTEIN M., ABERMAN K.: Hyperdreambooth:
Hypernetworks for fast personalization of text-to-image models. arXiv
preprint arXiv:2307.06949 (2023). 7

[RSH∗21] REIZENSTEIN J., SHAPOVALOV R., HENZLER P., SBOR-
DONE L., LABATUT P., NOVOTNY D.: Common objects in 3d: Large-
scale learning and evaluation of real-life 3d category reconstruction. In
Proceedings of the IEEE/CVF International Conference on Computer
Vision (2021), pp. 10901–10911. 11, 19

[SBV∗22] SCHUHMANN C., BEAUMONT R., VENCU R., GORDON C.,
WIGHTMAN R., CHERTI M., COOMBES T., KATTA A., MULLIS C.,
WORTSMAN M., SCHRAMOWSKI P., KUNDURTHY S., CROWSON K.,
SCHMIDT L., KACZMARCZYK R., JITSEV J.: Laion-5b: An open
large-scale dataset for training next generation image-text models, 2022.
arXiv:2210.08402. 14, 19

[SCC∗22] SAHARIA C., CHAN W., CHANG H., LEE C. A., HO J., SAL-
IMANS T., FLEET D. J., NOROUZI M.: Palette: Image-to-image diffu-
sion models, 2022. arXiv:2111.05826. 5

[SCL∗22] SANGHI A., CHU H., LAMBOURNE J. G., WANG Y., CHENG
C.-Y., FUMERO M., MALEKSHAN K. R.: Clip-forge: Towards zero-
shot text-to-shape generation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (2022), pp. 18603–
18613. 13

http://arxiv.org/abs/2212.08751 [cs]
https://doi.org/10.1145/3528223.3530107
https://doi.org/10.1145/3528223.3530107
https://doi.org/10.1145/3528223.3530107
https://openai.com/dall-e-2/
https://openai.com/dall-e-2/
https://openai.com/dall-e-3
https://openai.com/dall-e-3
http://arxiv.org/abs/1903.07291
http://arxiv.org/abs/1903.07291
http://arxiv.org/abs/1605.05396
http://arxiv.org/abs/2210.08402
http://arxiv.org/abs/2111.05826


30 R. Po & W. Yifan & V. Golyanik et al. / State of the Art on Diffusion Models for Visual Computing

[SCP∗23] SHUE J. R., CHAN E. R., PO R., ANKNER Z., WU J., WET-
ZSTEIN G.: 3d neural field generation using triplane diffusion. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (2023), pp. 20875–20886. 11, 12, 13

[SCS∗22] SAHARIA C., CHAN W., SAXENA S., LI L., WHANG
J., DENTON E. L., GHASEMIPOUR K., GONTIJO LOPES R.,
KARAGOL AYAN B., SALIMANS T., ET AL.: Photorealistic text-to-
image diffusion models with deep language understanding. Advances
in Neural Information Processing Systems 35 (2022), 36479–36494. 2,
20, 22

[SDCS23] SONG Y., DHARIWAL P., CHEN M., SUTSKEVER I.: Consis-
tency models. arXiv preprint arXiv:2303.01469 (2023). 22

[SESM22] SUHAIL M., ESTEVES C., SIGAL L., MAKADIA A.: Gener-
alizable patch-based neural rendering. In European Conference on Com-
puter Vision (2022), Springer. 15

[SFHAE23] SELLA E., FIEBELMAN G., HEDMAN P., AVERBUCH-
ELOR H.: Vox-e: Text-guided voxel editing of 3d objects, 2023. 15

[SFL∗23] SANGHI A., FU R., LIU V., WILLIS K. D., SHAYANI H.,
KHASAHMADI A. H., SRIDHAR S., RITCHIE D.: Clip-sculptor: Zero-
shot generation of high-fidelity and diverse shapes from natural lan-
guage. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (2023), pp. 18339–18348. 13

[SGZ∗16] SALIMANS T., GOODFELLOW I., ZAREMBA W., CHEUNG
V., RADFORD A., CHEN X.: Improved techniques for training gans.
Advances in neural information processing systems 29 (2016). 20

[SH22] SALIMANS T., HO J.: Progressive distillation for fast sampling
of diffusion models, 2022. arXiv:2202.00512. 22

[Ske23] SKETCHFAB: Sketchfab — sketchfab.com. https://
sketchfab.com/, 2023. [Accessed 25-09-2023]. 19

[SLS∗23] SHEN L., LI X., SUN H., PENG J., XIAN K., CAO Z., LIN G.:
Make-it-4d: Synthesizing a consistent long-term dynamic scene video
from a single image. arXiv e-prints (2023). 9

[SMB∗24] SHIMADA S., MUELLER F., BEDNARIK J., DOOSTI B.,
BICKEL B., TANG D., GOLYANIK V., TAYLOR J., THEOBALT C.,
BEELER T.: Macs: Mass conditioned 3d hand and object motion syn-
thesis. In International Conference on 3D Vision (3DV) (2024). 18

[SME20] SONG J., MENG C., ERMON S.: Denoising diffusion implicit
models. arXiv preprint arXiv:2010.02502 (2020). 4, 7

[SNL∗21] SELVARAJU P., NABAIL M., LOIZOU M., MASLIOUKOVA
M., AVERKIOU M., ANDREOU A., CHAUDHURI S., KALOGERAKIS
E.: Buildingnet: Learning to label 3d buildings. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (2021),
pp. 10397–10407. 19

[SPH∗22] SINGER U., POLYAK A., HAYES T., YIN X., AN J., ZHANG
S., HU Q., YANG H., ASHUAL O., GAFNI O., ET AL.: Make-a-
video: Text-to-video generation without text-video data. arXiv preprint
arXiv:2209.14792 (2022). 8, 18

[SPX∗22] SHI Z., PENG S., XU Y., LIAO Y., SHEN Y.: Deep generative
models on 3d representations: A survey, 2022. 2

[SRC∗21] SRINIVASAN K., RAMAN K., CHEN J., BENDERSKY M.,
NAJORK M.: Wit: Wikipedia-based image text dataset for multimodal
multilingual machine learning. Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in Information
Retrieval (2021). 19

[SRL∗23] SOHN K., RUIZ N., LEE K., CHIN D. C., BLOK I., CHANG
H., BARBER J., JIANG L., ENTIS G., LI Y., HAO Y., ESSA I., RUBIN-
STEIN M., KRISHNAN D.: Styledrop: Text-to-image generation in any
style. arXiv preprint arXiv:2306.00983 (2023). 7

[SRV23] SZYMANOWICZ S., RUPPRECHT C., VEDALDI A.: Viewset
diffusion: (0-)image-conditioned 3d generative models from 2d data.
arXiv e-prints (2023). 13

[SSDK∗20] SONG Y., SOHL-DICKSTEIN J., KINGMA D. P., KUMAR
A., ERMON S., POOLE B.: Score-based generative modeling through

stochastic differential equations. arXiv preprint arXiv:2011.13456
(2020). 3, 4

[SSME22] SU X., SONG J., MENG C., ERMON S.: Dual diffu-
sion implicit bridges for image-to-image translation. arXiv preprint
arXiv:2203.08382 (2022). 4

[SSP∗23a] SHAO R., SUN J., PENG C., ZHENG Z., ZHOU B., ZHANG
H., LIU Y.: Control4d: Dynamic portrait editing by learning 4d gan from
2d diffusion-based editor. ArXiv abs/2305.20082 (2023). 18

[SSP∗23b] SINGER U., SHEYNIN S., POLYAK A., ASHUAL O.,
MAKAROV I., KOKKINOS F., GOYAL N., VEDALDI A., PARIKH D.,
JOHNSON J., TAIGMAN Y.: Text-to-4d dynamic scene generation. ArXiv
abs/2301.11280 (2023). 1, 10, 18

[STE22] SKOROKHODOV I., TULYAKOV S., ELHOSEINY M.: Stylegan-
v: A continuous video generator with the price, image quality and perks
of stylegan2. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2022), pp. 3626–3636. 20

[STG∗20] SIDHU V., TRETSCHK E., GOLYANIK V., AGUDO A.,
THEOBALT C.: Neural dense non-rigid structure from motion with latent
space constraints. In European Conference on Computer Vision (ECCV)
(2020). 16

[STKB23] SHAFIR Y., TEVET G., KAPON R., BERMANO A. H.: Hu-
man Motion Diffusion as a Generative Prior. arXiv e-prints (2023). 18

[SVB∗21] SCHUHMANN C., VENCU R., BEAUMONT R., KACZMAR-
CZYK R., MULLIS C., KATTA A., COOMBES T., JITSEV J., KO-
MATSUZAKI A.: LAION-400M: open dataset of clip-filtered 400 mil-
lion image-text pairs. CoRR abs/2111.02114 (2021). URL: https:
//arxiv.org/abs/2111.02114, arXiv:2111.02114. 19

[SVI∗15] SZEGEDY C., VANHOUCKE V., IOFFE S., SHLENS J., WOJNA
Z.: Rethinking the inception architecture for computer vision, 2015.
arXiv:1512.00567. 20

[SWM∗19] STRAUB J., WHELAN T., MA L., CHEN Y., WIJMANS E.,
GREEN S., ENGEL J. J., MUR-ARTAL R., REN C., VERMA S., ET AL.:
The replica dataset: A digital replica of indoor spaces. arXiv preprint
arXiv:1906.05797 (2019). 19

[SWY∗23] SHI Y., WANG P., YE J., MAI L., LI K., YANG X.: Mv-
dream: Multi-view diffusion for 3d generation. arXiv:2308.16512
(2023). 15

[SWZ∗18] SUN X., WU J., ZHANG X., ZHANG Z., ZHANG C., XUE T.,
TENENBAUM J. B., FREEMAN W. T.: Pix3d: Dataset and methods for
single-image 3d shape modeling. In Proceedings of the IEEE conference
on computer vision and pattern recognition (2018), pp. 2974–2983. 19

[SXLJ23] SHI J., XIONG W., LIN Z., JUNG H. J.: Instantbooth: Per-
sonalized text-to-image generation without test-time finetuning. arXiv
preprint arXiv:2304.03411 (2023). 7

[SXP∗23] SHI Y., XUE C., PAN J., ZHANG W., TAN V. Y., BAI S.:
Dragdiffusion: Harnessing diffusion models for interactive point-based
image editing. arXiv preprint arXiv:2306.14435 (2023). 7

[SZS12] SOOMRO K., ZAMIR A. R., SHAH M.: A dataset of 101 human
action classes from videos in the wild. Center for Research in Computer
Vision 2, 11 (2012). 20

[SZT∗23] SHAO R., ZHENG Z., TU H., LIU B., ZHANG H., LIU Y.:
Tensor4d: Efficient neural 4d decomposition for high-fidelity dynamic
reconstruction and rendering. In Computer Vision and Pattern Recogni-
tion (CVPR) (2023). 18

[TCL23] TSENG J., CASTELLON R., LIU K.: Edge: Editable dance gen-
eration from music. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (2023), pp. 448–458. 17, 18,
21

[TGBD23] TUMANYAN N., GEYER M., BAGON S., DEKEL T.: Plug-
and-play diffusion features for text-driven image-to-image translation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2023), pp. 1921–1930. 6, 10

http://arxiv.org/abs/2202.00512
https://sketchfab.com/
https://sketchfab.com/
https://arxiv.org/abs/2111.02114
https://arxiv.org/abs/2111.02114
http://arxiv.org/abs/2111.02114
http://arxiv.org/abs/1512.00567


R. Po & W. Yifan & V. Golyanik et al. / State of the Art on Diffusion Models for Visual Computing 31

[TGBT20] TAHERI O., GHORBANI N., BLACK M. J., TZIONAS D.:
GRAB: A dataset of whole-body human grasping of objects. In Eu-
ropean Conference on Computer Vision (ECCV) (2020). 17

[TJW∗23] TANG L., JIA M., WANG Q., PHOO C. P., HARIHARAN
B.: Emergent correspondence from image diffusion. arXiv preprint
arXiv:2306.03881 (2023). 22

[TRC∗23] TANG L., RUIZ N., CHU Q., LI Y., HOLYNSKI A., JACOBS
D. E., HARIHARAN B., PRITCH Y., WADHWA N., ABERMAN K.,
ET AL.: Realfill: Reference-driven generation for authentic image com-
pletion. arXiv preprint arXiv:2309.16668 (2023). 7

[TRG∗23] TEVET G., RAAB S., GORDON B., SHAFIR Y., COHEN-OR
D., BERMANO A. H.: Human motion diffusion model. In International
Conference on Learning Representations (ICLR) (2023). 17, 18

[TSB∗22] THOMASON J., SHRIDHAR M., BISK Y., PAXTON C.,
ZETTLEMOYER L.: Language grounding with 3d objects. In Confer-
ence on Robot Learning (2022), PMLR, pp. 1691–1701. 13

[TYC∗23] TEWARI A., YIN T., CAZENAVETTE G., REZCHIKOV S.,
TENENBAUM J. B., DURAND F., FREEMAN W. T., SITZMANN V.: Dif-
fusion with forward models: Solving stochastic inverse problems without
direct supervision. In arXiv (2023). 13

[UVSK∗18] UNTERTHINER T., VAN STEENKISTE S., KURACH K.,
MARINIER R., MICHALSKI M., GELLY S.: Towards accurate gen-
erative models of video: A new metric & challenges. arXiv preprint
arXiv:1812.01717 (2018). 20

[VACO23] VOYNOV A., ABERMAN K., COHEN-OR D.: Sketch-guided
text-to-image diffusion models. In ACM SIGGRAPH 2023 Conference
Proceedings (2023), pp. 1–11. 5, 6

[VCCOA23] VOYNOV A., CHU Q., COHEN-OR D., ABERMAN K.:
p+: Extended textual conditioning in text-to-image generation. arXiv
preprint arXiv:2303.09522 (2023). 7

[Vin11] VINCENT P.: A connection between score matching and denois-
ing autoencoders. Neural computation 23, 7 (2011), 1661–1674. 4

[VJMP22] VOLETI V., JOLICOEUR-MARTINEAU A., PAL C.: Mcvd:
Masked conditional video diffusion for prediction, generation, and in-
terpolation. In (NeurIPS) Advances in Neural Information Processing
Systems (2022). URL: https://arxiv.org/abs/2205.09853.
9

[VSP∗17] VASWANI A., SHAZEER N., PARMAR N., USZKOREIT J.,
JONES L., GOMEZ A. N., KAISER Ł., POLOSUKHIN I.: Attention is
all you need. NIPS (2017). 5, 7

[WCMB∗22] WATSON D., CHAN W., MARTIN-BRUALLA R., HO J.,
TAGLIASACCHI A., NOROUZI M.: Novel view synthesis with diffusion
models, 2022. arXiv:2210.04628. 15

[WDL∗22] WANG H., DU X., LI J., YEH R. A., SHAKHNAROVICH G.:
Score jacobian chaining: Lifting pretrained 2d diffusion models for 3d
generation, 2022. arXiv:2212.00774. 14

[WDlT22] WU C. H., DE LA TORRE F.: Unifying diffusion models’
latent space, with applications to cyclediffusion and guidance. arXiv
preprint arXiv:2210.05559 (2022). 7

[WGN23] WALLACE B., GOKUL A., NAIK N.: Edict: Exact diffu-
sion inversion via coupled transformations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2023), pp. 22532–22541. 7

[WGW∗22] WU J. Z., GE Y., WANG X., LEI W., GU Y., HSU W.,
SHAN Y., QIE X., SHOU M. Z.: Tune-a-video: One-shot tuning of
image diffusion models for text-to-video generation. arXiv preprint
arXiv:2212.11565 (2022). 9, 10

[WHZZ23] WANG Y., HOLYNSKI A., ZHANG X., ZHANG X.: Sun-
stage: Portrait reconstruction and relighting using the sun as a light stage.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2023), pp. 20792–20802. 22

[WLJ∗22] WU C., LIANG J., JI L., YANG F., FANG Y., JIANG D.,
DUAN N.: Nüwa: Visual synthesis pre-training for neural visual world

creation. In European conference on computer vision (2022), Springer,
pp. 720–736. 21

[WLJ∗23] WU S., LI R., JAKAB T., RUPPRECHT C., VEDALDI A.:
MagicPony: Learning articulated 3d animals in the wild. 16, 22

[WLW∗23] WANG Z., LU C., WANG Y., BAO F., LI C., SU H., ZHU
J.: Prolificdreamer: High-fidelity and diverse text-to-3d generation with
variational score distillation. arXiv preprint arXiv:2305.16213 (2023).
14

[WYC∗23] WANG J., YUAN H., CHEN D., ZHANG Y., WANG X.,
ZHANG S.: Modelscope text-to-video technical report. arXiv preprint
arXiv:2308.06571 (2023). 8

[WYZ∗23] WANG X., YUAN H., ZHANG S., CHEN D., WANG J.,
ZHANG Y., SHEN Y., ZHAO D., ZHOU J.: Videocomposer: Com-
positional video synthesis with motion controllability. arXiv preprint
arXiv:2306.02018 (2023). 9

[WZF∗23] WU T., ZHANG J., FU X., WANG Y., REN J., PAN L., WU
W., YANG L., WANG J., QIAN C., ET AL.: Omniobject3d: Large-
vocabulary 3d object dataset for realistic perception, reconstruction and
generation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2023), pp. 803–814. 19

[WZJ∗23] WEI Y., ZHANG Y., JI Z., BAI J., ZHANG L., ZUO W.: Elite:
Encoding visual concepts into textual embeddings for customized text-
to-image generation. arXiv preprint arXiv:2302.13848 (2023). 7

[WZZ∗23] WANG T., ZHANG B., ZHANG T., GU S., BAO J., BALTRU-
SAITIS T., SHEN J., CHEN D., WEN F., CHEN Q., GUO B.: RODIN: A
generative model for sculpting 3d digital avatars using diffusion. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (2023), pp. 4563–4573. 13

[XCZ∗18] XU W., CHATTERJEE A., ZOLLHÖFER M., RHODIN H.,
MEHTA D., SEIDEL H., THEOBALT C.: Monoperfcap: Human per-
formance capture from monocular video. ACM Trans. Graph. 37, 2
(2018), 27. URL: https://doi.org/10.1145/3181973, doi:
10.1145/3181973. 20

[XGX∗23] XUE L., GAO M., XING C., MARTÍN-MARTÍN R., WU J.,
XIONG C., XU R., NIEBLES J. C., SAVARESE S.: Ulip: Learning a
unified representation of language, images, and point clouds for 3d un-
derstanding. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2023), pp. 1179–1189. 20

[XHZ∗22] XUE H., HANG T., ZENG Y., SUN Y., LIU B., YANG H., FU
J., GUO B.: Advancing high-resolution video-language representation
with large-scale video transcriptions. In International Conference on
Computer Vision and Pattern Recognition (CVPR) (2022). 19

[XMYR16] XU J., MEI T., YAO T., RUI Y.: Msr-vtt: A large video
description dataset for bridging video and language. In Proceedings of
the IEEE conference on computer vision and pattern recognition (2016),
pp. 5288–5296. 20

[XYF∗23] XIAO G., YIN T., FREEMAN W. T., DURAND F., HAN S.:
Fastcomposer: Tuning-free multi-subject image generation with local-
ized attention. arXiv preprint arXiv:2305.10431 (2023). 7

[YHL∗22] YAO C.-H., HUNG W.-C., LI Y., RUBINSTEIN M., YANG
M.-H., JAMPANI V.: Lassie: Learning articulated shape from sparse
image ensemble via 3d part discovery. In NeurIPS (2022). 16

[YK19] YUAN Y., KITANI K.: Ego-pose estimation and forecasting as
real-time pd control. In Proceedings of the IEEE International Confer-
ence on Computer Vision (ICCV) (2019), pp. 10082–10092. 17

[YLND23] YESHWANTH C., LIU Y.-C., NIESSNER M., DAI A.: Scan-
net++: A high-fidelity dataset of 3d indoor scenes. arXiv preprint
arXiv:2308.11417 (2023). 19

[YLT∗22] YE V., LI Z., TUCKER R., KANAZAWA A., SNAVELY N.:
Deformable sprites for unsupervised video decomposition. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (June
2022). 10

https://arxiv.org/abs/2205.09853
http://arxiv.org/abs/2210.04628
http://arxiv.org/abs/2212.00774
https://doi.org/10.1145/3181973
https://doi.org/10.1145/3181973
https://doi.org/10.1145/3181973


32 R. Po & W. Yifan & V. Golyanik et al. / State of the Art on Diffusion Models for Visual Computing

[YRH∗23] YAO C.-H., RAJ A., HUNG W.-C., LI Y., RUBINSTEIN
M., YANG M.-H., JAMPANI V.: Artic3d: Learning robust articu-
lated 3d shapes from noisy web image collections. arXiv preprint
arXiv:2306.04619 (2023). 16

[YSI∗23] YUAN Y., SONG J., IQBAL U., VAHDAT A., KAUTZ J.: Phys-
diff: Physics-guided human motion diffusion model. In ICCV (2023).
18, 22

[YSJ∗21] YANG G., SUN D., JAMPANI V., VLASIC D., COLE F.,
CHANG H., RAMANAN D., FREEMAN W. T., LIU C.: Lasr: Learn-
ing articulated shape reconstruction from a monocular video. In CVPR
(2021). 16

[YSKS23] YU S., SOHN K., KIM S., SHIN J.: Video probabilis-
tic diffusion models in projected latent space. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2023), pp. 18456–18466. 8

[YWH∗23] YIN L., WANG Y., HE T., LIU J., ZHAO W., LI B., JIN X.,
LIN J.: Emog: Synthesizing emotive co-speech 3d gesture with diffusion
model. arXiv e-prints (2023). 18

[YWL∗23] YANG S., WU Z., LI M., ZHANG Z., HAO L., BAO
W., CHENG M., XIAO L.: Diffusestylegesture: Stylized audio-driven
co-speech gesture generation with diffusion models. arXiv preprint
arXiv:2305.04919 (2023). 18

[YYTK21] YU A., YE V., TANCIK M., KANAZAWA A.: pixelNeRF:
Neural radiance fields from one or few images. In CVPR (2021). 15

[YZLL23] YANG S., ZHOU Y., LIU Z., LOY C. C.: Rerender a
video: Zero-shot text-guided video-to-video translation. arXiv preprint
arXiv:2306.07954 (2023). 10

[ZA23] ZHANG L., AGRAWALA M.: Adding conditional control to text-
to-image diffusion models. arXiv preprint arXiv:2302.05543 (2023). 6,
9, 10

[ZCC∗23] ZOU Z.-X., CHENG W., CAO Y.-P., HUANG S.-S., SHAN Y.,
ZHANG S.-H.: Sparse3d: Distilling multiview-consistent diffusion for
object reconstruction from sparse views, 2023. arXiv:2308.14078.
15

[ZCP∗22] ZHANG M., CAI Z., PAN L., HONG F., GUO X., YANG L.,
LIU Z.: Motiondiffuse: Text-driven human motion generation with dif-
fusion model. arXiv preprint arXiv:2208.15001 (2022). 18

[ZDW21] ZHOU L., DU Y., WU J.: 3d shape generation and completion
through point-voxel diffusion. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (2021), pp. 5826–5835. 11,
12

[ZFK∗23] ZHANG H., FENG Y., KULITS P., WEN Y., THIES J., BLACK
M. J.: Teca: Text-guided generation and editing of compositional 3d
avatars. arXiv (2023). 16

[ZFY∗23] ZOU K., FAISAN S., YU B., VALETTE S., SEO H.: 4D Facial
Expression Diffusion Model. arXiv e-prints (2023). 16

[ZJGL23] ZHANG F., JI N., GAO F., LI Y.: Diffmotion: Speech-driven
gesture synthesis using denoising diffusion model. arXiv e-prints (2023).
18

[ZLAH23] ZHANG Z., LIU R., ABERMAN K., HANOCKA R.: Tedi:
Temporally-entangled diffusion for long-term motion synthesis. arXiv
preprint arXiv:2307.15042 (2023). 18

[ZLC∗22] ZHANG M., LIU C., CHEN Y., LEI Z., WANG M.: Music-to-
dance generation with multiple conformer. In International Conference
on Multimedia Retrieval (2022), p. 34–38. 17

[ZLC∗23] ZHAO Z., LIU W., CHEN X., ZENG X., WANG R., CHENG
P., FU B., CHEN T., YU G., GAO S.: Michelangelo: Conditional 3d
shape generation based on shape-image-text aligned latent representa-
tion. arXiv preprint arXiv:2306.17115 (2023). 11, 12, 13, 20

[ZMZ∗22] ZHANG S., MA Q., ZHANG Y., QIAN Z., KWON T., POLLE-
FEYS M., BOGO F., TANG S.: Egobody: Human body shape and motion
of interacting people from head-mounted devices. In European confer-
ence on computer vision (ECCV) (Oct. 2022). 17

[ZPW∗23] ZHENG X.-Y., PAN H., WANG P.-S., TONG X., LIU Y.,
SHUM H.-Y.: Locally attentional SDF diffusion for controllable 3d
shape generation. ACM Trans. Graph. 42, 4 (2023), 91:1–91:13. doi:
10.1145/3592103. 11, 12, 13

[ZQL∗23] ZHANG L., QIU Q., LIN H., ZHANG Q., SHI C., YANG W.,
SHI Y., YANG S., XU L., YU J.: Dreamface: Progressive generation of
animatable 3d faces under text guidance. arXiv e-prints (2023). 16

[ZT23] ZHOU Z., TULSIANI S.: Sparsefusion: Distilling view-
conditioned diffusion for 3d reconstruction. In CVPR (2023). 15

[ZTF∗18] ZHOU T., TUCKER R., FLYNN J., FYFFE G., SNAVELY N.:
Stereo magnification: Learning view synthesis using multiplane images.
ACM Trans. Graph. (Proc. SIGGRAPH) 37 (2018). URL: https://
arxiv.org/abs/1805.09817. 19

[ZTNW23] ZHANG B., TANG J., NIESSNER M., WONKA P.:
3dshape2vecset: A 3d shape representation for neural fields and gen-
erative diffusion models. ACM Trans. Graph. 42, 4 (jul 2023). doi:
10.1145/3592442. 11, 12, 13

[ZVW∗22] ZENG X., VAHDAT A., WILLIAMS F., GOJCIC Z., LITANY
O., FIDLER S., KREIS K.: Lion: Latent point diffusion models for 3d
shape generation. arXiv preprint arXiv:2210.06978 (2022). 11, 12, 13

[ZWL∗23] ZHUANG J., WANG C., LIU L., LIN L., LI G.: Dreameditor:
Text-driven 3d scene editing with neural fields. SIGGRAPH Asia (2023).
15

[ZWY∗22] ZHOU D., WANG W., YAN H., LV W., ZHU Y., FENG J.:
Magicvideo: Efficient video generation with latent diffusion models.
arXiv preprint arXiv:2211.11018 (2022). 8

[ZYM∗22] ZHENG Y., YANG Y., MO K., LI J., YU T., LIU Y., LIU
K., GUIBAS L. J.: Gimo: Gaze-informed human motion prediction in
context. arXiv preprint arXiv:2204.09443 (2022). 17

[ZYW∗23] ZHAN F., YU Y., WU R., ZHANG J., LU S., LIU L., KO-
RTYLEWSKI A., THEOBALT C., XING E.: Multimodal image synthesis
and editing: The generative ai era. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence (2023). 2, 5

[ZZL∗23] ZHAO W. X., ZHOU K., LI J., TANG T., WANG X., HOU Y.,
MIN Y., ZHANG B., ZHANG J., DONG Z., DU Y., YANG C., CHEN
Y., CHEN Z., JIANG J., REN R., LI Y., TANG X., LIU Z., LIU P.,
NIE J., RONG WEN J.: A survey of large language models. ArXiv
abs/2303.18223 (2023). 2

http://arxiv.org/abs/2308.14078
https://doi.org/10.1145/3592103
https://doi.org/10.1145/3592103
https://arxiv.org/abs/1805.09817
https://arxiv.org/abs/1805.09817
https://doi.org/10.1145/3592442
https://doi.org/10.1145/3592442



